Evaluate
\frac{x-4}{12\left(x-6\right)\left(x-1\right)}
Expand
\frac{x-4}{12\left(x-6\right)\left(x-1\right)}
Graph
Share
Copied to clipboard
\frac{\frac{1}{3x^{2}-3}}{\frac{5}{x+1}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}
Factor x^{2}-3x-4.
\frac{\frac{1}{3x^{2}-3}}{\frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-4\right)\left(x+1\right) is \left(x-4\right)\left(x+1\right). Multiply \frac{5}{x+1} times \frac{x-4}{x-4}.
\frac{\frac{1}{3x^{2}-3}}{\frac{5\left(x-4\right)-\left(x+4\right)}{\left(x-4\right)\left(x+1\right)}}
Since \frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)} and \frac{x+4}{\left(x-4\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{3x^{2}-3}}{\frac{5x-20-x-4}{\left(x-4\right)\left(x+1\right)}}
Do the multiplications in 5\left(x-4\right)-\left(x+4\right).
\frac{\frac{1}{3x^{2}-3}}{\frac{4x-24}{\left(x-4\right)\left(x+1\right)}}
Combine like terms in 5x-20-x-4.
\frac{\left(x-4\right)\left(x+1\right)}{\left(3x^{2}-3\right)\left(4x-24\right)}
Divide \frac{1}{3x^{2}-3} by \frac{4x-24}{\left(x-4\right)\left(x+1\right)} by multiplying \frac{1}{3x^{2}-3} by the reciprocal of \frac{4x-24}{\left(x-4\right)\left(x+1\right)}.
\frac{\left(x-4\right)\left(x+1\right)}{3\times 4\left(x-6\right)\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{x-4}{3\times 4\left(x-6\right)\left(x-1\right)}
Cancel out x+1 in both numerator and denominator.
\frac{x-4}{12x^{2}-84x+72}
Expand the expression.
\frac{\frac{1}{3x^{2}-3}}{\frac{5}{x+1}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}
Factor x^{2}-3x-4.
\frac{\frac{1}{3x^{2}-3}}{\frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-4\right)\left(x+1\right) is \left(x-4\right)\left(x+1\right). Multiply \frac{5}{x+1} times \frac{x-4}{x-4}.
\frac{\frac{1}{3x^{2}-3}}{\frac{5\left(x-4\right)-\left(x+4\right)}{\left(x-4\right)\left(x+1\right)}}
Since \frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)} and \frac{x+4}{\left(x-4\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{3x^{2}-3}}{\frac{5x-20-x-4}{\left(x-4\right)\left(x+1\right)}}
Do the multiplications in 5\left(x-4\right)-\left(x+4\right).
\frac{\frac{1}{3x^{2}-3}}{\frac{4x-24}{\left(x-4\right)\left(x+1\right)}}
Combine like terms in 5x-20-x-4.
\frac{\left(x-4\right)\left(x+1\right)}{\left(3x^{2}-3\right)\left(4x-24\right)}
Divide \frac{1}{3x^{2}-3} by \frac{4x-24}{\left(x-4\right)\left(x+1\right)} by multiplying \frac{1}{3x^{2}-3} by the reciprocal of \frac{4x-24}{\left(x-4\right)\left(x+1\right)}.
\frac{\left(x-4\right)\left(x+1\right)}{3\times 4\left(x-6\right)\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{x-4}{3\times 4\left(x-6\right)\left(x-1\right)}
Cancel out x+1 in both numerator and denominator.
\frac{x-4}{12x^{2}-84x+72}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}