Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{1}{3x^{2}-3}}{\frac{5}{x+1}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}
Factor x^{2}-3x-4.
\frac{\frac{1}{3x^{2}-3}}{\frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-4\right)\left(x+1\right) is \left(x-4\right)\left(x+1\right). Multiply \frac{5}{x+1} times \frac{x-4}{x-4}.
\frac{\frac{1}{3x^{2}-3}}{\frac{5\left(x-4\right)-\left(x+4\right)}{\left(x-4\right)\left(x+1\right)}}
Since \frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)} and \frac{x+4}{\left(x-4\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{3x^{2}-3}}{\frac{5x-20-x-4}{\left(x-4\right)\left(x+1\right)}}
Do the multiplications in 5\left(x-4\right)-\left(x+4\right).
\frac{\frac{1}{3x^{2}-3}}{\frac{4x-24}{\left(x-4\right)\left(x+1\right)}}
Combine like terms in 5x-20-x-4.
\frac{\left(x-4\right)\left(x+1\right)}{\left(3x^{2}-3\right)\left(4x-24\right)}
Divide \frac{1}{3x^{2}-3} by \frac{4x-24}{\left(x-4\right)\left(x+1\right)} by multiplying \frac{1}{3x^{2}-3} by the reciprocal of \frac{4x-24}{\left(x-4\right)\left(x+1\right)}.
\frac{\left(x-4\right)\left(x+1\right)}{3\times 4\left(x-6\right)\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{x-4}{3\times 4\left(x-6\right)\left(x-1\right)}
Cancel out x+1 in both numerator and denominator.
\frac{x-4}{12x^{2}-84x+72}
Expand the expression.
\frac{\frac{1}{3x^{2}-3}}{\frac{5}{x+1}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}
Factor x^{2}-3x-4.
\frac{\frac{1}{3x^{2}-3}}{\frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-4\right)\left(x+1\right) is \left(x-4\right)\left(x+1\right). Multiply \frac{5}{x+1} times \frac{x-4}{x-4}.
\frac{\frac{1}{3x^{2}-3}}{\frac{5\left(x-4\right)-\left(x+4\right)}{\left(x-4\right)\left(x+1\right)}}
Since \frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)} and \frac{x+4}{\left(x-4\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{3x^{2}-3}}{\frac{5x-20-x-4}{\left(x-4\right)\left(x+1\right)}}
Do the multiplications in 5\left(x-4\right)-\left(x+4\right).
\frac{\frac{1}{3x^{2}-3}}{\frac{4x-24}{\left(x-4\right)\left(x+1\right)}}
Combine like terms in 5x-20-x-4.
\frac{\left(x-4\right)\left(x+1\right)}{\left(3x^{2}-3\right)\left(4x-24\right)}
Divide \frac{1}{3x^{2}-3} by \frac{4x-24}{\left(x-4\right)\left(x+1\right)} by multiplying \frac{1}{3x^{2}-3} by the reciprocal of \frac{4x-24}{\left(x-4\right)\left(x+1\right)}.
\frac{\left(x-4\right)\left(x+1\right)}{3\times 4\left(x-6\right)\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{x-4}{3\times 4\left(x-6\right)\left(x-1\right)}
Cancel out x+1 in both numerator and denominator.
\frac{x-4}{12x^{2}-84x+72}
Expand the expression.