Evaluate
\frac{\sqrt{6}}{18}\approx 0.136082763
Share
Copied to clipboard
\frac{\frac{\sqrt{2}}{2\times 2}}{\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{1}}
Multiply \frac{1}{2} times \frac{\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\sqrt{2}}{2\times 2}}{\frac{\sqrt{3}}{2}+\sqrt{3}}
Anything divided by one gives itself.
\frac{\frac{\sqrt{2}}{2\times 2}}{\frac{3}{2}\sqrt{3}}
Combine \frac{\sqrt{3}}{2} and \sqrt{3} to get \frac{3}{2}\sqrt{3}.
\frac{\sqrt{2}}{2\times 2\times \frac{3}{2}\sqrt{3}}
Express \frac{\frac{\sqrt{2}}{2\times 2}}{\frac{3}{2}\sqrt{3}} as a single fraction.
\frac{\sqrt{2}\sqrt{3}}{2\times 2\times \frac{3}{2}\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{2\times 2\times \frac{3}{2}\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{2}\sqrt{3}}{2\times 2\times \frac{3}{2}\times 3}
The square of \sqrt{3} is 3.
\frac{\sqrt{6}}{2\times 2\times \frac{3}{2}\times 3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{6}}{4\times \frac{3}{2}\times 3}
Multiply 2 and 2 to get 4.
\frac{\sqrt{6}}{\frac{4\times 3}{2}\times 3}
Express 4\times \frac{3}{2} as a single fraction.
\frac{\sqrt{6}}{\frac{12}{2}\times 3}
Multiply 4 and 3 to get 12.
\frac{\sqrt{6}}{6\times 3}
Divide 12 by 2 to get 6.
\frac{\sqrt{6}}{18}
Multiply 6 and 3 to get 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}