\frac { \frac { 1 } { 1 \times 2 } } { 9 r \cdot [ - 1 - ( - \frac { 1 } { 2 } ) ^ { 9 } } ]
Evaluate
-\frac{256}{4599r}
Expand
-\frac{256}{4599r}
Share
Copied to clipboard
\frac{\frac{1}{2}}{9r\left(-1-\left(-\frac{1}{2}\right)^{9}\right)}
Multiply 1 and 2 to get 2.
\frac{\frac{1}{2}}{9r\left(-1-\left(-\frac{1}{512}\right)\right)}
Calculate -\frac{1}{2} to the power of 9 and get -\frac{1}{512}.
\frac{\frac{1}{2}}{9r\left(-1+\frac{1}{512}\right)}
The opposite of -\frac{1}{512} is \frac{1}{512}.
\frac{\frac{1}{2}}{9r\left(-\frac{512}{512}+\frac{1}{512}\right)}
Convert -1 to fraction -\frac{512}{512}.
\frac{\frac{1}{2}}{9r\times \frac{-512+1}{512}}
Since -\frac{512}{512} and \frac{1}{512} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{2}}{9r\left(-\frac{511}{512}\right)}
Add -512 and 1 to get -511.
\frac{\frac{1}{2}}{\frac{9\left(-511\right)}{512}r}
Express 9\left(-\frac{511}{512}\right) as a single fraction.
\frac{\frac{1}{2}}{\frac{-4599}{512}r}
Multiply 9 and -511 to get -4599.
\frac{\frac{1}{2}}{-\frac{4599}{512}r}
Fraction \frac{-4599}{512} can be rewritten as -\frac{4599}{512} by extracting the negative sign.
\frac{1}{2\left(-\frac{4599}{512}\right)r}
Express \frac{\frac{1}{2}}{-\frac{4599}{512}r} as a single fraction.
\frac{1}{\frac{2\left(-4599\right)}{512}r}
Express 2\left(-\frac{4599}{512}\right) as a single fraction.
\frac{1}{\frac{-9198}{512}r}
Multiply 2 and -4599 to get -9198.
\frac{1}{-\frac{4599}{256}r}
Reduce the fraction \frac{-9198}{512} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{2}}{9r\left(-1-\left(-\frac{1}{2}\right)^{9}\right)}
Multiply 1 and 2 to get 2.
\frac{\frac{1}{2}}{9r\left(-1-\left(-\frac{1}{512}\right)\right)}
Calculate -\frac{1}{2} to the power of 9 and get -\frac{1}{512}.
\frac{\frac{1}{2}}{9r\left(-1+\frac{1}{512}\right)}
The opposite of -\frac{1}{512} is \frac{1}{512}.
\frac{\frac{1}{2}}{9r\left(-\frac{512}{512}+\frac{1}{512}\right)}
Convert -1 to fraction -\frac{512}{512}.
\frac{\frac{1}{2}}{9r\times \frac{-512+1}{512}}
Since -\frac{512}{512} and \frac{1}{512} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{2}}{9r\left(-\frac{511}{512}\right)}
Add -512 and 1 to get -511.
\frac{\frac{1}{2}}{\frac{9\left(-511\right)}{512}r}
Express 9\left(-\frac{511}{512}\right) as a single fraction.
\frac{\frac{1}{2}}{\frac{-4599}{512}r}
Multiply 9 and -511 to get -4599.
\frac{\frac{1}{2}}{-\frac{4599}{512}r}
Fraction \frac{-4599}{512} can be rewritten as -\frac{4599}{512} by extracting the negative sign.
\frac{1}{2\left(-\frac{4599}{512}\right)r}
Express \frac{\frac{1}{2}}{-\frac{4599}{512}r} as a single fraction.
\frac{1}{\frac{2\left(-4599\right)}{512}r}
Express 2\left(-\frac{4599}{512}\right) as a single fraction.
\frac{1}{\frac{-9198}{512}r}
Multiply 2 and -4599 to get -9198.
\frac{1}{-\frac{4599}{256}r}
Reduce the fraction \frac{-9198}{512} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}