Evaluate
\frac{2\sqrt{2}-\sqrt{3}}{5}\approx 0.219275263
Share
Copied to clipboard
\frac{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{6}}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{6}}}
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{1-\frac{1}{\sqrt{6}}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}}{1-\frac{1}{\sqrt{6}}}
The square of \sqrt{3} is 3.
\frac{\frac{3\sqrt{2}}{6}-\frac{2\sqrt{3}}{6}}{1-\frac{1}{\sqrt{6}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{\sqrt{2}}{2} times \frac{3}{3}. Multiply \frac{\sqrt{3}}{3} times \frac{2}{2}.
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{1-\frac{1}{\sqrt{6}}}
Since \frac{3\sqrt{2}}{6} and \frac{2\sqrt{3}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{1-\frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}}
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{1-\frac{\sqrt{6}}{6}}
The square of \sqrt{6} is 6.
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{\frac{6}{6}-\frac{\sqrt{6}}{6}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{6}{6}.
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{\frac{6-\sqrt{6}}{6}}
Since \frac{6}{6} and \frac{\sqrt{6}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\times 6}{6\left(6-\sqrt{6}\right)}
Divide \frac{3\sqrt{2}-2\sqrt{3}}{6} by \frac{6-\sqrt{6}}{6} by multiplying \frac{3\sqrt{2}-2\sqrt{3}}{6} by the reciprocal of \frac{6-\sqrt{6}}{6}.
\frac{-2\sqrt{3}+3\sqrt{2}}{-\sqrt{6}+6}
Cancel out 6 in both numerator and denominator.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{\left(-\sqrt{6}+6\right)\left(-\sqrt{6}-6\right)}
Rationalize the denominator of \frac{-2\sqrt{3}+3\sqrt{2}}{-\sqrt{6}+6} by multiplying numerator and denominator by -\sqrt{6}-6.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{\left(-\sqrt{6}\right)^{2}-6^{2}}
Consider \left(-\sqrt{6}+6\right)\left(-\sqrt{6}-6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{\left(-1\right)^{2}\left(\sqrt{6}\right)^{2}-6^{2}}
Expand \left(-\sqrt{6}\right)^{2}.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{1\left(\sqrt{6}\right)^{2}-6^{2}}
Calculate -1 to the power of 2 and get 1.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{1\times 6-6^{2}}
The square of \sqrt{6} is 6.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{6-6^{2}}
Multiply 1 and 6 to get 6.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{6-36}
Calculate 6 to the power of 2 and get 36.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{-30}
Subtract 36 from 6 to get -30.
\frac{2\sqrt{3}\sqrt{6}+12\sqrt{3}-3\sqrt{2}\sqrt{6}-18\sqrt{2}}{-30}
Apply the distributive property by multiplying each term of -2\sqrt{3}+3\sqrt{2} by each term of -\sqrt{6}-6.
\frac{2\sqrt{3}\sqrt{3}\sqrt{2}+12\sqrt{3}-3\sqrt{2}\sqrt{6}-18\sqrt{2}}{-30}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{2\times 3\sqrt{2}+12\sqrt{3}-3\sqrt{2}\sqrt{6}-18\sqrt{2}}{-30}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{6\sqrt{2}+12\sqrt{3}-3\sqrt{2}\sqrt{6}-18\sqrt{2}}{-30}
Multiply 2 and 3 to get 6.
\frac{6\sqrt{2}+12\sqrt{3}-3\sqrt{2}\sqrt{2}\sqrt{3}-18\sqrt{2}}{-30}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{6\sqrt{2}+12\sqrt{3}-3\times 2\sqrt{3}-18\sqrt{2}}{-30}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{6\sqrt{2}+12\sqrt{3}-6\sqrt{3}-18\sqrt{2}}{-30}
Multiply -3 and 2 to get -6.
\frac{6\sqrt{2}+6\sqrt{3}-18\sqrt{2}}{-30}
Combine 12\sqrt{3} and -6\sqrt{3} to get 6\sqrt{3}.
\frac{-12\sqrt{2}+6\sqrt{3}}{-30}
Combine 6\sqrt{2} and -18\sqrt{2} to get -12\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}