Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}-\left(\frac{i}{1-i}\right)^{2}}{1+i}
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
\frac{\frac{2i}{2}-\left(\frac{i}{1-i}\right)^{2}}{1+i}
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
\frac{i-\left(\frac{i}{1-i}\right)^{2}}{1+i}
Divide 2i by 2 to get i.
\frac{i-\left(\frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{2}}{1+i}
Multiply both numerator and denominator of \frac{i}{1-i} by the complex conjugate of the denominator, 1+i.
\frac{i-\left(\frac{-1+i}{2}\right)^{2}}{1+i}
Do the multiplications in \frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
\frac{i-\left(-\frac{1}{2}+\frac{1}{2}i\right)^{2}}{1+i}
Divide -1+i by 2 to get -\frac{1}{2}+\frac{1}{2}i.
\frac{i-\left(-\frac{1}{2}i\right)}{1+i}
Calculate -\frac{1}{2}+\frac{1}{2}i to the power of 2 and get -\frac{1}{2}i.
\frac{i+\frac{1}{2}i}{1+i}
The opposite of -\frac{1}{2}i is \frac{1}{2}i.
\frac{\frac{3}{2}i}{1+i}
Add i and \frac{1}{2}i to get \frac{3}{2}i.
\frac{\frac{3}{2}i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{\frac{3}{2}+\frac{3}{2}i}{2}
Do the multiplications in \frac{\frac{3}{2}i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
\frac{3}{4}+\frac{3}{4}i
Divide \frac{3}{2}+\frac{3}{2}i by 2 to get \frac{3}{4}+\frac{3}{4}i.
Re(\frac{\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}-\left(\frac{i}{1-i}\right)^{2}}{1+i})
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{\frac{2i}{2}-\left(\frac{i}{1-i}\right)^{2}}{1+i})
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(\frac{i-\left(\frac{i}{1-i}\right)^{2}}{1+i})
Divide 2i by 2 to get i.
Re(\frac{i-\left(\frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{2}}{1+i})
Multiply both numerator and denominator of \frac{i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{i-\left(\frac{-1+i}{2}\right)^{2}}{1+i})
Do the multiplications in \frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(\frac{i-\left(-\frac{1}{2}+\frac{1}{2}i\right)^{2}}{1+i})
Divide -1+i by 2 to get -\frac{1}{2}+\frac{1}{2}i.
Re(\frac{i-\left(-\frac{1}{2}i\right)}{1+i})
Calculate -\frac{1}{2}+\frac{1}{2}i to the power of 2 and get -\frac{1}{2}i.
Re(\frac{i+\frac{1}{2}i}{1+i})
The opposite of -\frac{1}{2}i is \frac{1}{2}i.
Re(\frac{\frac{3}{2}i}{1+i})
Add i and \frac{1}{2}i to get \frac{3}{2}i.
Re(\frac{\frac{3}{2}i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{\frac{3}{2}i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{\frac{3}{2}+\frac{3}{2}i}{2})
Do the multiplications in \frac{\frac{3}{2}i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(\frac{3}{4}+\frac{3}{4}i)
Divide \frac{3}{2}+\frac{3}{2}i by 2 to get \frac{3}{4}+\frac{3}{4}i.
\frac{3}{4}
The real part of \frac{3}{4}+\frac{3}{4}i is \frac{3}{4}.