Evaluate
\frac{3}{4}+\frac{3}{4}i=0.75+0.75i
Real Part
\frac{3}{4} = 0.75
Share
Copied to clipboard
\frac{\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}-\left(\frac{i}{1-i}\right)^{2}}{1+i}
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
\frac{\frac{2i}{2}-\left(\frac{i}{1-i}\right)^{2}}{1+i}
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
\frac{i-\left(\frac{i}{1-i}\right)^{2}}{1+i}
Divide 2i by 2 to get i.
\frac{i-\left(\frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{2}}{1+i}
Multiply both numerator and denominator of \frac{i}{1-i} by the complex conjugate of the denominator, 1+i.
\frac{i-\left(\frac{-1+i}{2}\right)^{2}}{1+i}
Do the multiplications in \frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
\frac{i-\left(-\frac{1}{2}+\frac{1}{2}i\right)^{2}}{1+i}
Divide -1+i by 2 to get -\frac{1}{2}+\frac{1}{2}i.
\frac{i-\left(-\frac{1}{2}i\right)}{1+i}
Calculate -\frac{1}{2}+\frac{1}{2}i to the power of 2 and get -\frac{1}{2}i.
\frac{i+\frac{1}{2}i}{1+i}
The opposite of -\frac{1}{2}i is \frac{1}{2}i.
\frac{\frac{3}{2}i}{1+i}
Add i and \frac{1}{2}i to get \frac{3}{2}i.
\frac{\frac{3}{2}i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{\frac{3}{2}+\frac{3}{2}i}{2}
Do the multiplications in \frac{\frac{3}{2}i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
\frac{3}{4}+\frac{3}{4}i
Divide \frac{3}{2}+\frac{3}{2}i by 2 to get \frac{3}{4}+\frac{3}{4}i.
Re(\frac{\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}-\left(\frac{i}{1-i}\right)^{2}}{1+i})
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{\frac{2i}{2}-\left(\frac{i}{1-i}\right)^{2}}{1+i})
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(\frac{i-\left(\frac{i}{1-i}\right)^{2}}{1+i})
Divide 2i by 2 to get i.
Re(\frac{i-\left(\frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{2}}{1+i})
Multiply both numerator and denominator of \frac{i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{i-\left(\frac{-1+i}{2}\right)^{2}}{1+i})
Do the multiplications in \frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(\frac{i-\left(-\frac{1}{2}+\frac{1}{2}i\right)^{2}}{1+i})
Divide -1+i by 2 to get -\frac{1}{2}+\frac{1}{2}i.
Re(\frac{i-\left(-\frac{1}{2}i\right)}{1+i})
Calculate -\frac{1}{2}+\frac{1}{2}i to the power of 2 and get -\frac{1}{2}i.
Re(\frac{i+\frac{1}{2}i}{1+i})
The opposite of -\frac{1}{2}i is \frac{1}{2}i.
Re(\frac{\frac{3}{2}i}{1+i})
Add i and \frac{1}{2}i to get \frac{3}{2}i.
Re(\frac{\frac{3}{2}i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{\frac{3}{2}i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{\frac{3}{2}+\frac{3}{2}i}{2})
Do the multiplications in \frac{\frac{3}{2}i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(\frac{3}{4}+\frac{3}{4}i)
Divide \frac{3}{2}+\frac{3}{2}i by 2 to get \frac{3}{4}+\frac{3}{4}i.
\frac{3}{4}
The real part of \frac{3}{4}+\frac{3}{4}i is \frac{3}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}