Evaluate
\frac{1}{10}=0.1
Factor
\frac{1}{2 \cdot 5} = 0.1
Share
Copied to clipboard
\frac{\left(\left(\frac{8}{120}+\frac{15}{120}\right)\times 5-\left(\frac{5}{72}-\frac{1}{16}\right)\times \frac{6}{5}\right)\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Least common multiple of 15 and 8 is 120. Convert \frac{1}{15} and \frac{1}{8} to fractions with denominator 120.
\frac{\left(\frac{8+15}{120}\times 5-\left(\frac{5}{72}-\frac{1}{16}\right)\times \frac{6}{5}\right)\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Since \frac{8}{120} and \frac{15}{120} have the same denominator, add them by adding their numerators.
\frac{\left(\frac{23}{120}\times 5-\left(\frac{5}{72}-\frac{1}{16}\right)\times \frac{6}{5}\right)\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Add 8 and 15 to get 23.
\frac{\left(\frac{23\times 5}{120}-\left(\frac{5}{72}-\frac{1}{16}\right)\times \frac{6}{5}\right)\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Express \frac{23}{120}\times 5 as a single fraction.
\frac{\left(\frac{115}{120}-\left(\frac{5}{72}-\frac{1}{16}\right)\times \frac{6}{5}\right)\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Multiply 23 and 5 to get 115.
\frac{\left(\frac{23}{24}-\left(\frac{5}{72}-\frac{1}{16}\right)\times \frac{6}{5}\right)\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Reduce the fraction \frac{115}{120} to lowest terms by extracting and canceling out 5.
\frac{\left(\frac{23}{24}-\left(\frac{10}{144}-\frac{9}{144}\right)\times \frac{6}{5}\right)\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Least common multiple of 72 and 16 is 144. Convert \frac{5}{72} and \frac{1}{16} to fractions with denominator 144.
\frac{\left(\frac{23}{24}-\frac{10-9}{144}\times \frac{6}{5}\right)\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Since \frac{10}{144} and \frac{9}{144} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{23}{24}-\frac{1}{144}\times \frac{6}{5}\right)\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Subtract 9 from 10 to get 1.
\frac{\left(\frac{23}{24}-\frac{1\times 6}{144\times 5}\right)\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Multiply \frac{1}{144} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\frac{23}{24}-\frac{6}{720}\right)\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Do the multiplications in the fraction \frac{1\times 6}{144\times 5}.
\frac{\left(\frac{23}{24}-\frac{1}{120}\right)\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Reduce the fraction \frac{6}{720} to lowest terms by extracting and canceling out 6.
\frac{\left(\frac{115}{120}-\frac{1}{120}\right)\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Least common multiple of 24 and 120 is 120. Convert \frac{23}{24} and \frac{1}{120} to fractions with denominator 120.
\frac{\frac{115-1}{120}\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Since \frac{115}{120} and \frac{1}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{114}{120}\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Subtract 1 from 115 to get 114.
\frac{\frac{19}{20}\times \frac{2}{19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Reduce the fraction \frac{114}{120} to lowest terms by extracting and canceling out 6.
\frac{\frac{19\times 2}{20\times 19}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Multiply \frac{19}{20} times \frac{2}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2}{20}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Cancel out 19 in both numerator and denominator.
\frac{\frac{1}{10}}{\frac{\frac{1}{20}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Reduce the fraction \frac{2}{20} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{10}}{\frac{\frac{9}{180}-\frac{7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Least common multiple of 20 and 180 is 180. Convert \frac{1}{20} and \frac{7}{180} to fractions with denominator 180.
\frac{\frac{1}{10}}{\frac{\frac{9-7}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Since \frac{9}{180} and \frac{7}{180} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{10}}{\frac{\frac{2}{180}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Subtract 7 from 9 to get 2.
\frac{\frac{1}{10}}{\frac{\frac{1}{90}}{\frac{1}{20}+\frac{1}{40}-\frac{23}{360}}}
Reduce the fraction \frac{2}{180} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{10}}{\frac{\frac{1}{90}}{\frac{2}{40}+\frac{1}{40}-\frac{23}{360}}}
Least common multiple of 20 and 40 is 40. Convert \frac{1}{20} and \frac{1}{40} to fractions with denominator 40.
\frac{\frac{1}{10}}{\frac{\frac{1}{90}}{\frac{2+1}{40}-\frac{23}{360}}}
Since \frac{2}{40} and \frac{1}{40} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{10}}{\frac{\frac{1}{90}}{\frac{3}{40}-\frac{23}{360}}}
Add 2 and 1 to get 3.
\frac{\frac{1}{10}}{\frac{\frac{1}{90}}{\frac{27}{360}-\frac{23}{360}}}
Least common multiple of 40 and 360 is 360. Convert \frac{3}{40} and \frac{23}{360} to fractions with denominator 360.
\frac{\frac{1}{10}}{\frac{\frac{1}{90}}{\frac{27-23}{360}}}
Since \frac{27}{360} and \frac{23}{360} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{10}}{\frac{\frac{1}{90}}{\frac{4}{360}}}
Subtract 23 from 27 to get 4.
\frac{\frac{1}{10}}{\frac{\frac{1}{90}}{\frac{1}{90}}}
Reduce the fraction \frac{4}{360} to lowest terms by extracting and canceling out 4.
\frac{\frac{1}{10}}{1}
Divide \frac{1}{90} by \frac{1}{90} to get 1.
\frac{1}{10}
Anything divided by one gives itself.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}