Solve for m
m=\frac{2\eta +41}{5}
Solve for η
\eta =\frac{5m-41}{2}
Share
Copied to clipboard
2\eta +20=5m-21
Multiply both sides of the equation by 2.
5m-21=2\eta +20
Swap sides so that all variable terms are on the left hand side.
5m=2\eta +20+21
Add 21 to both sides.
5m=2\eta +41
Add 20 and 21 to get 41.
\frac{5m}{5}=\frac{2\eta +41}{5}
Divide both sides by 5.
m=\frac{2\eta +41}{5}
Dividing by 5 undoes the multiplication by 5.
2\eta +20=5m-21
Multiply both sides of the equation by 2.
2\eta =5m-21-20
Subtract 20 from both sides.
2\eta =5m-41
Subtract 20 from -21 to get -41.
\frac{2\eta }{2}=\frac{5m-41}{2}
Divide both sides by 2.
\eta =\frac{5m-41}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}