Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{-A}{8.314}\left(\frac{1}{298}-\frac{1}{273}\right)
Add 25 and 273 to get 298.
\frac{-A}{8.314}\left(\frac{273}{81354}-\frac{298}{81354}\right)
Least common multiple of 298 and 273 is 81354. Convert \frac{1}{298} and \frac{1}{273} to fractions with denominator 81354.
\frac{-A}{8.314}\times \frac{273-298}{81354}
Since \frac{273}{81354} and \frac{298}{81354} have the same denominator, subtract them by subtracting their numerators.
\frac{-A}{8.314}\left(-\frac{25}{81354}\right)
Subtract 298 from 273 to get -25.
-\frac{500}{4157}A\left(-\frac{25}{81354}\right)
Divide -A by 8.314 to get -\frac{500}{4157}A.
\frac{-500\left(-25\right)}{4157\times 81354}A
Multiply -\frac{500}{4157} times -\frac{25}{81354} by multiplying numerator times numerator and denominator times denominator.
\frac{12500}{338188578}A
Do the multiplications in the fraction \frac{-500\left(-25\right)}{4157\times 81354}.
\frac{6250}{169094289}A
Reduce the fraction \frac{12500}{338188578} to lowest terms by extracting and canceling out 2.
\frac{-A}{8.314}\left(\frac{1}{298}-\frac{1}{273}\right)
Add 25 and 273 to get 298.
\frac{-A}{8.314}\left(\frac{273}{81354}-\frac{298}{81354}\right)
Least common multiple of 298 and 273 is 81354. Convert \frac{1}{298} and \frac{1}{273} to fractions with denominator 81354.
\frac{-A}{8.314}\times \frac{273-298}{81354}
Since \frac{273}{81354} and \frac{298}{81354} have the same denominator, subtract them by subtracting their numerators.
\frac{-A}{8.314}\left(-\frac{25}{81354}\right)
Subtract 298 from 273 to get -25.
-\frac{500}{4157}A\left(-\frac{25}{81354}\right)
Divide -A by 8.314 to get -\frac{500}{4157}A.
\frac{-500\left(-25\right)}{4157\times 81354}A
Multiply -\frac{500}{4157} times -\frac{25}{81354} by multiplying numerator times numerator and denominator times denominator.
\frac{12500}{338188578}A
Do the multiplications in the fraction \frac{-500\left(-25\right)}{4157\times 81354}.
\frac{6250}{169094289}A
Reduce the fraction \frac{12500}{338188578} to lowest terms by extracting and canceling out 2.