Solve for h
h\in \mathrm{R}
V=0\text{ or }\delta =0
Solve for V
\left\{\begin{matrix}\\V=0\text{, }&\text{unconditionally}\\V\in \mathrm{R}\text{, }&\delta =0\end{matrix}\right.
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}\gamma }(V)\delta \gamma +\frac{\mathrm{d}}{\mathrm{d}k}(V)\delta h=\delta V
Swap sides so that all variable terms are on the left hand side.
\frac{\mathrm{d}}{\mathrm{d}k}(V)\delta h=\delta V-\frac{\mathrm{d}}{\mathrm{d}\gamma }(V)\delta \gamma
Subtract \frac{\mathrm{d}}{\mathrm{d}\gamma }(V)\delta \gamma from both sides.
h\delta \frac{\mathrm{d}}{\mathrm{d}k}(V)=-\gamma \delta \frac{\mathrm{d}}{\mathrm{d}\gamma }(V)+V\delta
Reorder the terms.
0=V\delta
The equation is in standard form.
h\in
This is false for any h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}