Solve for a
\left\{\begin{matrix}a=\frac{\sqrt{2}otv-2\delta +2}{8t^{2}}\text{, }&t\neq 0\\a\in \mathrm{R}\text{, }&\delta =1\text{ and }t=0\end{matrix}\right.
Solve for o
\left\{\begin{matrix}o=-\frac{\sqrt{2}\left(1-\delta -4at^{2}\right)}{tv}\text{, }&v\neq 0\text{ and }t\neq 0\\o\in \mathrm{R}\text{, }&\left(\delta =1\text{ and }t=0\right)\text{ or }\left(\delta =1-4at^{2}\text{ and }v=0\right)\end{matrix}\right.
Share
Copied to clipboard
\delta =1+\frac{\sqrt{2}v}{2}ot-4at^{2}
Express \frac{\sqrt{2}}{2}v as a single fraction.
\delta =1+\frac{\sqrt{2}vo}{2}t-4at^{2}
Express \frac{\sqrt{2}v}{2}o as a single fraction.
\delta =1+\frac{\sqrt{2}vot}{2}-4at^{2}
Express \frac{\sqrt{2}vo}{2}t as a single fraction.
1+\frac{\sqrt{2}vot}{2}-4at^{2}=\delta
Swap sides so that all variable terms are on the left hand side.
\frac{\sqrt{2}vot}{2}-4at^{2}=\delta -1
Subtract 1 from both sides.
-4at^{2}=\delta -1-\frac{\sqrt{2}vot}{2}
Subtract \frac{\sqrt{2}vot}{2} from both sides.
-8at^{2}=2\delta -2-\sqrt{2}vot
Multiply both sides of the equation by 2.
\left(-8t^{2}\right)a=-\sqrt{2}otv+2\delta -2
The equation is in standard form.
\frac{\left(-8t^{2}\right)a}{-8t^{2}}=\frac{-\sqrt{2}otv+2\delta -2}{-8t^{2}}
Divide both sides by -8t^{2}.
a=\frac{-\sqrt{2}otv+2\delta -2}{-8t^{2}}
Dividing by -8t^{2} undoes the multiplication by -8t^{2}.
a=-\frac{-\sqrt{2}otv+2\delta -2}{8t^{2}}
Divide 2\delta -2-\sqrt{2}vot by -8t^{2}.
\delta =1+\frac{\sqrt{2}v}{2}ot-4at^{2}
Express \frac{\sqrt{2}}{2}v as a single fraction.
\delta =1+\frac{\sqrt{2}vo}{2}t-4at^{2}
Express \frac{\sqrt{2}v}{2}o as a single fraction.
\delta =1+\frac{\sqrt{2}vot}{2}-4at^{2}
Express \frac{\sqrt{2}vo}{2}t as a single fraction.
1+\frac{\sqrt{2}vot}{2}-4at^{2}=\delta
Swap sides so that all variable terms are on the left hand side.
1+\frac{\sqrt{2}vot}{2}=\delta +4at^{2}
Add 4at^{2} to both sides.
\frac{\sqrt{2}vot}{2}=\delta +4at^{2}-1
Subtract 1 from both sides.
\sqrt{2}vot=2\delta +8at^{2}-2
Multiply both sides of the equation by 2.
\sqrt{2}tvo=8at^{2}+2\delta -2
The equation is in standard form.
\frac{\sqrt{2}tvo}{\sqrt{2}tv}=\frac{8at^{2}+2\delta -2}{\sqrt{2}tv}
Divide both sides by \sqrt{2}vt.
o=\frac{8at^{2}+2\delta -2}{\sqrt{2}tv}
Dividing by \sqrt{2}vt undoes the multiplication by \sqrt{2}vt.
o=\frac{\sqrt{2}\left(4at^{2}+\delta -1\right)}{tv}
Divide 2\delta +8t^{2}a-2 by \sqrt{2}vt.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}