Solve for x (complex solution)
x=2\pi n_{1}-\frac{\sqrt{y}}{6}+\frac{\pi }{4}\text{, }n_{1}\in \mathrm{Z}
x=2\pi n_{1}-\frac{\sqrt{y}}{6}+\frac{7\pi }{4}\text{, }n_{1}\in \mathrm{Z}
Solve for y (complex solution)
\left\{\begin{matrix}\\y=\frac{9\left(7\pi +8\pi n_{1}-4x\right)^{2}}{4}\text{, }n_{1}\in \mathrm{Z}\text{, }arg(12\pi n_{1}-6x+\frac{21\pi }{2})<\pi \text{; }y=\frac{9\left(\pi +8\pi n_{2}-4x\right)^{2}}{4}\text{, }n_{2}\in \mathrm{Z}\text{, }arg(12\pi n_{2}-6x+\frac{3\pi }{2})<\pi \text{, }&\text{unconditionally}\\y=0\text{, }&x=2\pi n_{2}+\frac{\pi }{4}\text{ or }x=2\pi n_{1}+\frac{7\pi }{4}\end{matrix}\right.
Solve for x
x=2\pi n_{1}-\frac{\sqrt{y}}{6}+\frac{7\pi }{4}\text{, }n_{1}\in \mathrm{Z}
x=2\pi n_{1}-\frac{\sqrt{y}}{6}+\frac{\pi }{4}\text{, }n_{1}\in \mathrm{Z}\text{, }y\geq 0
Solve for y
y=\frac{9\left(\pi +8\pi n_{1}-4x\right)^{2}}{4}\text{, }n_{1}\in \mathrm{Z}\text{, }12\pi n_{1}-6x+\frac{3\pi }{2}\geq 0
y=\frac{9\left(7\pi +8\pi n_{1}-4x\right)^{2}}{4}\text{, }n_{1}\in \mathrm{Z}\text{, }12\pi n_{1}-6x+\frac{21\pi }{2}\geq 0
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}