Skip to main content
Evaluate
Tick mark Image

Share

\cos(\frac{5\pi }{6})
Express 5\times \frac{\pi }{6} as a single fraction.
\cos(\frac{\pi }{2}+\frac{\pi }{3})=\cos(\frac{\pi }{2})\cos(\frac{\pi }{3})-\sin(\frac{\pi }{3})\sin(\frac{\pi }{2})
Use \cos(x+y)=\cos(x)\cos(y)-\sin(y)\sin(x) where x=\frac{\pi }{2} and y=\frac{\pi }{3} to obtain the result.
0\cos(\frac{\pi }{3})-\sin(\frac{\pi }{3})\sin(\frac{\pi }{2})
Get the value of \cos(\frac{\pi }{2}) from trigonometric values table.
0\times \frac{1}{2}-\sin(\frac{\pi }{3})\sin(\frac{\pi }{2})
Get the value of \cos(\frac{\pi }{3}) from trigonometric values table.
0\times \frac{1}{2}-\frac{\sqrt{3}}{2}\sin(\frac{\pi }{2})
Get the value of \sin(\frac{\pi }{3}) from trigonometric values table.
0\times \frac{1}{2}-\frac{\sqrt{3}}{2}\times 1
Get the value of \sin(\frac{\pi }{2}) from trigonometric values table.
-\frac{\sqrt{3}}{2}
Do the calculations.