Evaluate
\frac{\sqrt{3}}{3}\approx 0.577350269
Share
Copied to clipboard
\cos(30)-\frac{\left(\sin(30)\right)^{2}}{\cos(30)}
Multiply \sin(30) and \sin(30) to get \left(\sin(30)\right)^{2}.
\frac{\sqrt{3}}{2}-\frac{\left(\sin(30)\right)^{2}}{\cos(30)}
Get the value of \cos(30) from trigonometric values table.
\frac{\sqrt{3}}{2}-\frac{\left(\frac{1}{2}\right)^{2}}{\cos(30)}
Get the value of \sin(30) from trigonometric values table.
\frac{\sqrt{3}}{2}-\frac{\frac{1}{4}}{\cos(30)}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\sqrt{3}}{2}-\frac{\frac{1}{4}}{\frac{\sqrt{3}}{2}}
Get the value of \cos(30) from trigonometric values table.
\frac{\sqrt{3}}{2}-\frac{2}{4\sqrt{3}}
Divide \frac{1}{4} by \frac{\sqrt{3}}{2} by multiplying \frac{1}{4} by the reciprocal of \frac{\sqrt{3}}{2}.
\frac{\sqrt{3}}{2}-\frac{2\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2}{4\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{2}-\frac{2\sqrt{3}}{4\times 3}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2\times 3}
Cancel out 2 in both numerator and denominator.
\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{6}
Multiply 2 and 3 to get 6.
\frac{1}{3}\sqrt{3}
Combine \frac{\sqrt{3}}{2} and -\frac{\sqrt{3}}{6} to get \frac{1}{3}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}