\alpha = \operatorname { arctg } \frac { 0,48 } { 1,5 } \quad \alpha = ?
Solve for α
\alpha =0
Share
Copied to clipboard
\alpha =\arctan(\frac{48}{150})\alpha
Expand \frac{0,48}{1,5} by multiplying both numerator and the denominator by 100.
\alpha =\arctan(\frac{8}{25})\alpha
Reduce the fraction \frac{48}{150} to lowest terms by extracting and canceling out 6.
\alpha -\arctan(\frac{8}{25})\alpha =0
Subtract \arctan(\frac{8}{25})\alpha from both sides.
-\arctan(\frac{8}{25})\alpha +\alpha =0
Reorder the terms.
\left(-\arctan(\frac{8}{25})+1\right)\alpha =0
Combine all terms containing \alpha .
\left(1-\arctan(\frac{8}{25})\right)\alpha =0
The equation is in standard form.
\alpha =0
Divide 0 by -\arctan(\frac{8}{25})+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}