Solve for b (complex solution)
b=\frac{\Delta x^{2}}{a^{2}\sin(\beta )}
x\neq 0\text{ and }\Delta \neq 0\text{ and }a\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\beta =\pi n_{1}
Solve for b
b=\frac{\left(\frac{x}{a}\right)^{2}\Delta }{\sin(\beta )}
x\neq 0\text{ and }a\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\beta =\pi n_{1}\text{ and }\Delta \neq 0
Solve for a (complex solution)
a=-ib^{-\frac{1}{2}}\sqrt{\Delta }x\left(-\sin(\beta )\right)^{-\frac{1}{2}}
a=ib^{-\frac{1}{2}}\sqrt{\Delta }x\left(-\sin(\beta )\right)^{-\frac{1}{2}}\text{, }x\neq 0\text{ and }b\neq 0\text{ and }\Delta \neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\beta =\pi n_{1}
Graph
Quiz
Trigonometry
5 problems similar to:
\Delta x = \frac { a } { \frac { x } { a b \times \sin \beta } }
Share
Copied to clipboard
\Delta x=\frac{aab\sin(\beta )}{x}
Variable b cannot be equal to 0 since division by zero is not defined. Divide a by \frac{x}{ab\sin(\beta )} by multiplying a by the reciprocal of \frac{x}{ab\sin(\beta )}.
\Delta x=\frac{a^{2}b\sin(\beta )}{x}
Multiply a and a to get a^{2}.
\frac{a^{2}b\sin(\beta )}{x}=\Delta x
Swap sides so that all variable terms are on the left hand side.
a^{2}b\sin(\beta )=\Delta xx
Multiply both sides of the equation by x.
a^{2}b\sin(\beta )=\Delta x^{2}
Multiply x and x to get x^{2}.
a^{2}\sin(\beta )b=\Delta x^{2}
The equation is in standard form.
\frac{a^{2}\sin(\beta )b}{a^{2}\sin(\beta )}=\frac{\Delta x^{2}}{a^{2}\sin(\beta )}
Divide both sides by a^{2}\sin(\beta ).
b=\frac{\Delta x^{2}}{a^{2}\sin(\beta )}
Dividing by a^{2}\sin(\beta ) undoes the multiplication by a^{2}\sin(\beta ).
b=\frac{\Delta x^{2}}{a^{2}\sin(\beta )}\text{, }b\neq 0
Variable b cannot be equal to 0.
\Delta x=\frac{aab\sin(\beta )}{x}
Variable b cannot be equal to 0 since division by zero is not defined. Divide a by \frac{x}{ab\sin(\beta )} by multiplying a by the reciprocal of \frac{x}{ab\sin(\beta )}.
\Delta x=\frac{a^{2}b\sin(\beta )}{x}
Multiply a and a to get a^{2}.
\frac{a^{2}b\sin(\beta )}{x}=\Delta x
Swap sides so that all variable terms are on the left hand side.
a^{2}b\sin(\beta )=\Delta xx
Multiply both sides of the equation by x.
a^{2}b\sin(\beta )=\Delta x^{2}
Multiply x and x to get x^{2}.
a^{2}\sin(\beta )b=\Delta x^{2}
The equation is in standard form.
\frac{a^{2}\sin(\beta )b}{a^{2}\sin(\beta )}=\frac{\Delta x^{2}}{a^{2}\sin(\beta )}
Divide both sides by a^{2}\sin(\beta ).
b=\frac{\Delta x^{2}}{a^{2}\sin(\beta )}
Dividing by a^{2}\sin(\beta ) undoes the multiplication by a^{2}\sin(\beta ).
b=\frac{\Delta x^{2}}{a^{2}\sin(\beta )}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}