Solve for K (complex solution)
\left\{\begin{matrix}K=\frac{mnvx^{3}}{4\Delta }\text{, }&\Delta \neq 0\\K\in \mathrm{C}\text{, }&\left(x=0\text{ or }m=0\text{ or }n=0\text{ or }v=0\right)\text{ and }\Delta =0\end{matrix}\right.
Solve for m (complex solution)
\left\{\begin{matrix}m=\frac{4K\Delta }{nvx^{3}}\text{, }&v\neq 0\text{ and }n\neq 0\text{ and }x\neq 0\\m\in \mathrm{C}\text{, }&\left(\Delta =0\text{ and }x=0\right)\text{ or }\left(n=0\text{ and }\Delta =0\right)\text{ or }\left(v=0\text{ and }\Delta =0\right)\text{ or }\left(K=0\text{ and }x=0\right)\text{ or }\left(K=0\text{ and }n=0\right)\text{ or }\left(K=0\text{ and }v=0\right)\end{matrix}\right.
Solve for K
\left\{\begin{matrix}K=\frac{mnvx^{3}}{4\Delta }\text{, }&\Delta \neq 0\\K\in \mathrm{R}\text{, }&\left(x=0\text{ or }m=0\text{ or }n=0\text{ or }v=0\right)\text{ and }\Delta =0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\frac{4K\Delta }{nvx^{3}}\text{, }&v\neq 0\text{ and }n\neq 0\text{ and }x\neq 0\\m\in \mathrm{R}\text{, }&\left(\Delta =0\text{ and }x=0\right)\text{ or }\left(n=0\text{ and }\Delta =0\right)\text{ or }\left(v=0\text{ and }\Delta =0\right)\text{ or }\left(K=0\text{ and }x=0\right)\text{ or }\left(K=0\text{ and }n=0\right)\text{ or }\left(K=0\text{ and }v=0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
\Delta K=\frac{1}{2}mx^{2+1}\times \frac{1}{2}nv^{\frac{2}{2}}
Anything divided by one gives itself.
\Delta K=\frac{1}{2}mx^{3}\times \frac{1}{2}nv^{\frac{2}{2}}
Add 2 and 1 to get 3.
\Delta K=\frac{1}{4}mx^{3}nv^{\frac{2}{2}}
Multiply \frac{1}{2} and \frac{1}{2} to get \frac{1}{4}.
\Delta K=\frac{1}{4}mx^{3}nv^{1}
Divide 2 by 2 to get 1.
\Delta K=\frac{1}{4}mx^{3}nv
Calculate v to the power of 1 and get v.
\Delta K=\frac{mnvx^{3}}{4}
The equation is in standard form.
\frac{\Delta K}{\Delta }=\frac{mnvx^{3}}{4\Delta }
Divide both sides by \Delta .
K=\frac{mnvx^{3}}{4\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
\Delta K=\frac{1}{2}mx^{2+1}\times \frac{1}{2}nv^{\frac{2}{2}}
Anything divided by one gives itself.
\Delta K=\frac{1}{2}mx^{3}\times \frac{1}{2}nv^{\frac{2}{2}}
Add 2 and 1 to get 3.
\Delta K=\frac{1}{4}mx^{3}nv^{\frac{2}{2}}
Multiply \frac{1}{2} and \frac{1}{2} to get \frac{1}{4}.
\Delta K=\frac{1}{4}mx^{3}nv^{1}
Divide 2 by 2 to get 1.
\Delta K=\frac{1}{4}mx^{3}nv
Calculate v to the power of 1 and get v.
\frac{1}{4}mx^{3}nv=\Delta K
Swap sides so that all variable terms are on the left hand side.
\frac{nvx^{3}}{4}m=K\Delta
The equation is in standard form.
\frac{4\times \frac{nvx^{3}}{4}m}{nvx^{3}}=\frac{4K\Delta }{nvx^{3}}
Divide both sides by \frac{1}{4}x^{3}nv.
m=\frac{4K\Delta }{nvx^{3}}
Dividing by \frac{1}{4}x^{3}nv undoes the multiplication by \frac{1}{4}x^{3}nv.
\Delta K=\frac{1}{2}mx^{2+1}\times \frac{1}{2}nv^{\frac{2}{2}}
Anything divided by one gives itself.
\Delta K=\frac{1}{2}mx^{3}\times \frac{1}{2}nv^{\frac{2}{2}}
Add 2 and 1 to get 3.
\Delta K=\frac{1}{4}mx^{3}nv^{\frac{2}{2}}
Multiply \frac{1}{2} and \frac{1}{2} to get \frac{1}{4}.
\Delta K=\frac{1}{4}mx^{3}nv^{1}
Divide 2 by 2 to get 1.
\Delta K=\frac{1}{4}mx^{3}nv
Calculate v to the power of 1 and get v.
\Delta K=\frac{mnvx^{3}}{4}
The equation is in standard form.
\frac{\Delta K}{\Delta }=\frac{mnvx^{3}}{4\Delta }
Divide both sides by \Delta .
K=\frac{mnvx^{3}}{4\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
\Delta K=\frac{1}{2}mx^{2+1}\times \frac{1}{2}nv^{\frac{2}{2}}
Anything divided by one gives itself.
\Delta K=\frac{1}{2}mx^{3}\times \frac{1}{2}nv^{\frac{2}{2}}
Add 2 and 1 to get 3.
\Delta K=\frac{1}{4}mx^{3}nv^{\frac{2}{2}}
Multiply \frac{1}{2} and \frac{1}{2} to get \frac{1}{4}.
\Delta K=\frac{1}{4}mx^{3}nv^{1}
Divide 2 by 2 to get 1.
\Delta K=\frac{1}{4}mx^{3}nv
Calculate v to the power of 1 and get v.
\frac{1}{4}mx^{3}nv=\Delta K
Swap sides so that all variable terms are on the left hand side.
\frac{nvx^{3}}{4}m=K\Delta
The equation is in standard form.
\frac{4\times \frac{nvx^{3}}{4}m}{nvx^{3}}=\frac{4K\Delta }{nvx^{3}}
Divide both sides by \frac{1}{4}x^{3}nv.
m=\frac{4K\Delta }{nvx^{3}}
Dividing by \frac{1}{4}x^{3}nv undoes the multiplication by \frac{1}{4}x^{3}nv.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}