Skip to main content
Solve for K (complex solution)
Tick mark Image
Solve for m (complex solution)
Tick mark Image
Solve for K
Tick mark Image
Solve for m
Tick mark Image
Graph

Similar Problems from Web Search

Share

\Delta K=\frac{1}{2}mx^{2+1}\times \frac{1}{2}nv^{\frac{2}{2}}
Anything divided by one gives itself.
\Delta K=\frac{1}{2}mx^{3}\times \frac{1}{2}nv^{\frac{2}{2}}
Add 2 and 1 to get 3.
\Delta K=\frac{1}{4}mx^{3}nv^{\frac{2}{2}}
Multiply \frac{1}{2} and \frac{1}{2} to get \frac{1}{4}.
\Delta K=\frac{1}{4}mx^{3}nv^{1}
Divide 2 by 2 to get 1.
\Delta K=\frac{1}{4}mx^{3}nv
Calculate v to the power of 1 and get v.
\Delta K=\frac{mnvx^{3}}{4}
The equation is in standard form.
\frac{\Delta K}{\Delta }=\frac{mnvx^{3}}{4\Delta }
Divide both sides by \Delta .
K=\frac{mnvx^{3}}{4\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
\Delta K=\frac{1}{2}mx^{2+1}\times \frac{1}{2}nv^{\frac{2}{2}}
Anything divided by one gives itself.
\Delta K=\frac{1}{2}mx^{3}\times \frac{1}{2}nv^{\frac{2}{2}}
Add 2 and 1 to get 3.
\Delta K=\frac{1}{4}mx^{3}nv^{\frac{2}{2}}
Multiply \frac{1}{2} and \frac{1}{2} to get \frac{1}{4}.
\Delta K=\frac{1}{4}mx^{3}nv^{1}
Divide 2 by 2 to get 1.
\Delta K=\frac{1}{4}mx^{3}nv
Calculate v to the power of 1 and get v.
\frac{1}{4}mx^{3}nv=\Delta K
Swap sides so that all variable terms are on the left hand side.
\frac{nvx^{3}}{4}m=K\Delta
The equation is in standard form.
\frac{4\times \frac{nvx^{3}}{4}m}{nvx^{3}}=\frac{4K\Delta }{nvx^{3}}
Divide both sides by \frac{1}{4}x^{3}nv.
m=\frac{4K\Delta }{nvx^{3}}
Dividing by \frac{1}{4}x^{3}nv undoes the multiplication by \frac{1}{4}x^{3}nv.
\Delta K=\frac{1}{2}mx^{2+1}\times \frac{1}{2}nv^{\frac{2}{2}}
Anything divided by one gives itself.
\Delta K=\frac{1}{2}mx^{3}\times \frac{1}{2}nv^{\frac{2}{2}}
Add 2 and 1 to get 3.
\Delta K=\frac{1}{4}mx^{3}nv^{\frac{2}{2}}
Multiply \frac{1}{2} and \frac{1}{2} to get \frac{1}{4}.
\Delta K=\frac{1}{4}mx^{3}nv^{1}
Divide 2 by 2 to get 1.
\Delta K=\frac{1}{4}mx^{3}nv
Calculate v to the power of 1 and get v.
\Delta K=\frac{mnvx^{3}}{4}
The equation is in standard form.
\frac{\Delta K}{\Delta }=\frac{mnvx^{3}}{4\Delta }
Divide both sides by \Delta .
K=\frac{mnvx^{3}}{4\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
\Delta K=\frac{1}{2}mx^{2+1}\times \frac{1}{2}nv^{\frac{2}{2}}
Anything divided by one gives itself.
\Delta K=\frac{1}{2}mx^{3}\times \frac{1}{2}nv^{\frac{2}{2}}
Add 2 and 1 to get 3.
\Delta K=\frac{1}{4}mx^{3}nv^{\frac{2}{2}}
Multiply \frac{1}{2} and \frac{1}{2} to get \frac{1}{4}.
\Delta K=\frac{1}{4}mx^{3}nv^{1}
Divide 2 by 2 to get 1.
\Delta K=\frac{1}{4}mx^{3}nv
Calculate v to the power of 1 and get v.
\frac{1}{4}mx^{3}nv=\Delta K
Swap sides so that all variable terms are on the left hand side.
\frac{nvx^{3}}{4}m=K\Delta
The equation is in standard form.
\frac{4\times \frac{nvx^{3}}{4}m}{nvx^{3}}=\frac{4K\Delta }{nvx^{3}}
Divide both sides by \frac{1}{4}x^{3}nv.
m=\frac{4K\Delta }{nvx^{3}}
Dividing by \frac{1}{4}x^{3}nv undoes the multiplication by \frac{1}{4}x^{3}nv.