Solve for G
\left\{\begin{matrix}G=\frac{h+\Delta }{v}\text{, }&v\neq 0\\G\in \mathrm{R}\text{, }&\Delta =-h\text{ and }v=0\end{matrix}\right.
Solve for h
h=Gv-\Delta
Share
Copied to clipboard
Gv-h=\Delta
Swap sides so that all variable terms are on the left hand side.
Gv=\Delta +h
Add h to both sides.
vG=h+\Delta
The equation is in standard form.
\frac{vG}{v}=\frac{h+\Delta }{v}
Divide both sides by v.
G=\frac{h+\Delta }{v}
Dividing by v undoes the multiplication by v.
Gv-h=\Delta
Swap sides so that all variable terms are on the left hand side.
-h=\Delta -Gv
Subtract Gv from both sides.
\frac{-h}{-1}=\frac{\Delta -Gv}{-1}
Divide both sides by -1.
h=\frac{\Delta -Gv}{-1}
Dividing by -1 undoes the multiplication by -1.
h=Gv-\Delta
Divide -Gv+\Delta by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}