Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2-\frac{\frac{3}{3}+\frac{4}{3}}{\frac{14}{8}\times 2}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Convert 1 to fraction \frac{3}{3}.
\frac{2-\frac{\frac{3+4}{3}}{\frac{14}{8}\times 2}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Since \frac{3}{3} and \frac{4}{3} have the same denominator, add them by adding their numerators.
\frac{2-\frac{\frac{7}{3}}{\frac{14}{8}\times 2}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Add 3 and 4 to get 7.
\frac{2-\frac{\frac{7}{3}}{\frac{7}{4}\times 2}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Reduce the fraction \frac{14}{8} to lowest terms by extracting and canceling out 2.
\frac{2-\frac{\frac{7}{3}}{\frac{7\times 2}{4}}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Express \frac{7}{4}\times 2 as a single fraction.
\frac{2-\frac{\frac{7}{3}}{\frac{14}{4}}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Multiply 7 and 2 to get 14.
\frac{2-\frac{\frac{7}{3}}{\frac{7}{2}}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Reduce the fraction \frac{14}{4} to lowest terms by extracting and canceling out 2.
\frac{2-\frac{7}{3}\times \frac{2}{7}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Divide \frac{7}{3} by \frac{7}{2} by multiplying \frac{7}{3} by the reciprocal of \frac{7}{2}.
\frac{2-\frac{7\times 2}{3\times 7}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Multiply \frac{7}{3} times \frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{2-\frac{2}{3}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Cancel out 7 in both numerator and denominator.
\frac{\frac{6}{3}-\frac{2}{3}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Convert 2 to fraction \frac{6}{3}.
\frac{\frac{6-2}{3}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Since \frac{6}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4}{3}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Subtract 2 from 6 to get 4.
\frac{\frac{4}{3}}{\frac{8-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Calculate 2 to the power of 3 and get 8.
\frac{\frac{4}{3}}{\frac{\frac{40}{5}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Convert 8 to fraction \frac{40}{5}.
\frac{\frac{4}{3}}{\frac{\frac{40-3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Since \frac{40}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4}{3}}{\frac{\frac{37}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Subtract 3 from 40 to get 37.
\frac{\frac{4}{3}}{\frac{\frac{37}{5}-\left(\frac{26}{4}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Least common multiple of 2 and 4 is 4. Convert \frac{13}{2} and \frac{3}{4} to fractions with denominator 4.
\frac{\frac{4}{3}}{\frac{\frac{37}{5}-\frac{26-3}{4}}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Since \frac{26}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4}{3}}{\frac{\frac{37}{5}-\frac{23}{4}}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Subtract 3 from 26 to get 23.
\frac{\frac{4}{3}}{\frac{\frac{148}{20}-\frac{115}{20}}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Least common multiple of 5 and 4 is 20. Convert \frac{37}{5} and \frac{23}{4} to fractions with denominator 20.
\frac{\frac{4}{3}}{\frac{\frac{148-115}{20}}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Since \frac{148}{20} and \frac{115}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4}{3}}{\frac{\frac{33}{20}}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
Subtract 115 from 148 to get 33.
\frac{\frac{4}{3}}{\frac{\frac{33}{20}}{\frac{3}{2}\times 2-\frac{17}{5}}}
Divide \frac{3}{2} by \frac{1}{2} by multiplying \frac{3}{2} by the reciprocal of \frac{1}{2}.
\frac{\frac{4}{3}}{\frac{\frac{33}{20}}{3-\frac{17}{5}}}
Cancel out 2 and 2.
\frac{\frac{4}{3}}{\frac{\frac{33}{20}}{\frac{15}{5}-\frac{17}{5}}}
Convert 3 to fraction \frac{15}{5}.
\frac{\frac{4}{3}}{\frac{\frac{33}{20}}{\frac{15-17}{5}}}
Since \frac{15}{5} and \frac{17}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4}{3}}{\frac{\frac{33}{20}}{-\frac{2}{5}}}
Subtract 17 from 15 to get -2.
\frac{\frac{4}{3}}{\frac{33}{20}\left(-\frac{5}{2}\right)}
Divide \frac{33}{20} by -\frac{2}{5} by multiplying \frac{33}{20} by the reciprocal of -\frac{2}{5}.
\frac{\frac{4}{3}}{\frac{33\left(-5\right)}{20\times 2}}
Multiply \frac{33}{20} times -\frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{4}{3}}{\frac{-165}{40}}
Do the multiplications in the fraction \frac{33\left(-5\right)}{20\times 2}.
\frac{\frac{4}{3}}{-\frac{33}{8}}
Reduce the fraction \frac{-165}{40} to lowest terms by extracting and canceling out 5.
\frac{4}{3}\left(-\frac{8}{33}\right)
Divide \frac{4}{3} by -\frac{33}{8} by multiplying \frac{4}{3} by the reciprocal of -\frac{33}{8}.
\frac{4\left(-8\right)}{3\times 33}
Multiply \frac{4}{3} times -\frac{8}{33} by multiplying numerator times numerator and denominator times denominator.
\frac{-32}{99}
Do the multiplications in the fraction \frac{4\left(-8\right)}{3\times 33}.
-\frac{32}{99}
Fraction \frac{-32}{99} can be rewritten as -\frac{32}{99} by extracting the negative sign.