Solve for P (complex solution)
\left\{\begin{matrix}\\P=0\text{, }&\text{unconditionally}\\P\in \mathrm{C}\text{, }&-10p^{2.2}+12527p-957500=0\text{ and }p\neq 0\end{matrix}\right.
Solve for P
\left\{\begin{matrix}\\P=0\text{, }&\text{unconditionally}\\P\in \mathrm{R}\text{, }&-10p^{2.2}+12527p-957500=0\text{ and }p\neq 0\end{matrix}\right.
Share
Copied to clipboard
\left(173-\left(47.73+0.1p^{1.2}+\frac{1750+7825}{p}\right)\right)Pp=0
Multiply both sides of the equation by p.
\left(173-\left(47.73+0.1p^{1.2}+\frac{9575}{p}\right)\right)Pp=0
Add 1750 and 7825 to get 9575.
\left(173-47.73-0.1p^{1.2}-\frac{9575}{p}\right)Pp=0
To find the opposite of 47.73+0.1p^{1.2}+\frac{9575}{p}, find the opposite of each term.
\left(125.27-0.1p^{1.2}-\frac{9575}{p}\right)Pp=0
Subtract 47.73 from 173 to get 125.27.
\left(125.27P-0.1p^{1.2}P-\frac{9575}{p}P\right)p=0
Use the distributive property to multiply 125.27-0.1p^{1.2}-\frac{9575}{p} by P.
\left(125.27P-0.1p^{1.2}P-\frac{9575P}{p}\right)p=0
Express \frac{9575}{p}P as a single fraction.
125.27Pp-0.1p^{1.2}Pp-\frac{9575P}{p}p=0
Use the distributive property to multiply 125.27P-0.1p^{1.2}P-\frac{9575P}{p} by p.
125.27Pp-0.1p^{2.2}P-\frac{9575P}{p}p=0
To multiply powers of the same base, add their exponents. Add 1.2 and 1 to get 2.2.
125.27Pp-0.1p^{2.2}P-\frac{9575Pp}{p}=0
Express \frac{9575P}{p}p as a single fraction.
125.27Pp-0.1p^{2.2}P-9575P=0
Cancel out p in both numerator and denominator.
\left(125.27p-0.1p^{2.2}-9575\right)P=0
Combine all terms containing P.
\left(-\frac{p^{2.2}}{10}+\frac{12527p}{100}-9575\right)P=0
The equation is in standard form.
P=0
Divide 0 by 125.27p-0.1p^{2.2}-9575.
\left(173-\left(47.73+0.1p^{1.2}+\frac{1750+7825}{p}\right)\right)Pp=0
Multiply both sides of the equation by p.
\left(173-\left(47.73+0.1p^{1.2}+\frac{9575}{p}\right)\right)Pp=0
Add 1750 and 7825 to get 9575.
\left(173-47.73-0.1p^{1.2}-\frac{9575}{p}\right)Pp=0
To find the opposite of 47.73+0.1p^{1.2}+\frac{9575}{p}, find the opposite of each term.
\left(125.27-0.1p^{1.2}-\frac{9575}{p}\right)Pp=0
Subtract 47.73 from 173 to get 125.27.
\left(125.27P-0.1p^{1.2}P-\frac{9575}{p}P\right)p=0
Use the distributive property to multiply 125.27-0.1p^{1.2}-\frac{9575}{p} by P.
\left(125.27P-0.1p^{1.2}P-\frac{9575P}{p}\right)p=0
Express \frac{9575}{p}P as a single fraction.
125.27Pp-0.1p^{1.2}Pp-\frac{9575P}{p}p=0
Use the distributive property to multiply 125.27P-0.1p^{1.2}P-\frac{9575P}{p} by p.
125.27Pp-0.1p^{2.2}P-\frac{9575P}{p}p=0
To multiply powers of the same base, add their exponents. Add 1.2 and 1 to get 2.2.
125.27Pp-0.1p^{2.2}P-\frac{9575Pp}{p}=0
Express \frac{9575P}{p}p as a single fraction.
125.27Pp-0.1p^{2.2}P-9575P=0
Cancel out p in both numerator and denominator.
\left(125.27p-0.1p^{2.2}-9575\right)P=0
Combine all terms containing P.
\left(-\frac{p^{2.2}}{10}+\frac{12527p}{100}-9575\right)P=0
The equation is in standard form.
P=0
Divide 0 by 125.27p-0.1p^{2.2}-9575.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}