\{ - 5 ( 2 x - 1 ) + 3 ( 2 y + 2 ) = - 1 + 3 y
Solve for x
x=\frac{3\left(y+4\right)}{10}
Graph
Share
Copied to clipboard
-10x+5+3\left(2y+2\right)=-1+3y
Use the distributive property to multiply -5 by 2x-1.
-10x+5+6y+6=-1+3y
Use the distributive property to multiply 3 by 2y+2.
-10x+11+6y=-1+3y
Add 5 and 6 to get 11.
-10x+6y=-1+3y-11
Subtract 11 from both sides.
-10x+6y=-12+3y
Subtract 11 from -1 to get -12.
-10x=-12+3y-6y
Subtract 6y from both sides.
-10x=-12-3y
Combine 3y and -6y to get -3y.
-10x=-3y-12
The equation is in standard form.
\frac{-10x}{-10}=\frac{-3y-12}{-10}
Divide both sides by -10.
x=\frac{-3y-12}{-10}
Dividing by -10 undoes the multiplication by -10.
x=\frac{3y}{10}+\frac{6}{5}
Divide -12-3y by -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}