Evaluate
\frac{11}{50}=0.22
Factor
\frac{11}{2 \cdot 5 ^ {2}} = 0.22
Share
Copied to clipboard
-\frac{1}{100}-\left(-\frac{3}{10}-\frac{9}{50}-\frac{9}{20}+\frac{7}{10}-\frac{1}{20}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Fraction \frac{-3}{10} can be rewritten as -\frac{3}{10} by extracting the negative sign.
-\frac{1}{100}-\left(-\frac{15}{50}-\frac{9}{50}-\frac{9}{20}+\frac{7}{10}-\frac{1}{20}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Least common multiple of 10 and 50 is 50. Convert -\frac{3}{10} and \frac{9}{50} to fractions with denominator 50.
-\frac{1}{100}-\left(\frac{-15-9}{50}-\frac{9}{20}+\frac{7}{10}-\frac{1}{20}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Since -\frac{15}{50} and \frac{9}{50} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{100}-\left(\frac{-24}{50}-\frac{9}{20}+\frac{7}{10}-\frac{1}{20}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Subtract 9 from -15 to get -24.
-\frac{1}{100}-\left(-\frac{12}{25}-\frac{9}{20}+\frac{7}{10}-\frac{1}{20}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Reduce the fraction \frac{-24}{50} to lowest terms by extracting and canceling out 2.
-\frac{1}{100}-\left(-\frac{48}{100}-\frac{45}{100}+\frac{7}{10}-\frac{1}{20}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Least common multiple of 25 and 20 is 100. Convert -\frac{12}{25} and \frac{9}{20} to fractions with denominator 100.
-\frac{1}{100}-\left(\frac{-48-45}{100}+\frac{7}{10}-\frac{1}{20}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Since -\frac{48}{100} and \frac{45}{100} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{100}-\left(-\frac{93}{100}+\frac{7}{10}-\frac{1}{20}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Subtract 45 from -48 to get -93.
-\frac{1}{100}-\left(-\frac{93}{100}+\frac{70}{100}-\frac{1}{20}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Least common multiple of 100 and 10 is 100. Convert -\frac{93}{100} and \frac{7}{10} to fractions with denominator 100.
-\frac{1}{100}-\left(\frac{-93+70}{100}-\frac{1}{20}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Since -\frac{93}{100} and \frac{70}{100} have the same denominator, add them by adding their numerators.
-\frac{1}{100}-\left(-\frac{23}{100}-\frac{1}{20}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Add -93 and 70 to get -23.
-\frac{1}{100}-\left(-\frac{23}{100}-\frac{5}{100}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Least common multiple of 100 and 20 is 100. Convert -\frac{23}{100} and \frac{1}{20} to fractions with denominator 100.
-\frac{1}{100}-\left(\frac{-23-5}{100}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Since -\frac{23}{100} and \frac{5}{100} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{100}-\left(\frac{-28}{100}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Subtract 5 from -23 to get -28.
-\frac{1}{100}-\left(-\frac{7}{25}-\left(\frac{3}{20}+\frac{2}{25}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Reduce the fraction \frac{-28}{100} to lowest terms by extracting and canceling out 4.
-\frac{1}{100}-\left(-\frac{7}{25}-\left(\frac{15}{100}+\frac{8}{100}\right)+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Least common multiple of 20 and 25 is 100. Convert \frac{3}{20} and \frac{2}{25} to fractions with denominator 100.
-\frac{1}{100}-\left(-\frac{7}{25}-\frac{15+8}{100}+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Since \frac{15}{100} and \frac{8}{100} have the same denominator, add them by adding their numerators.
-\frac{1}{100}-\left(-\frac{7}{25}-\frac{23}{100}+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Add 15 and 8 to get 23.
-\frac{1}{100}-\left(-\frac{28}{100}-\frac{23}{100}+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Least common multiple of 25 and 100 is 100. Convert -\frac{7}{25} and \frac{23}{100} to fractions with denominator 100.
-\frac{1}{100}-\left(\frac{-28-23}{100}+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Since -\frac{28}{100} and \frac{23}{100} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{100}-\left(-\frac{51}{100}+\frac{1}{50}\right)-\frac{12}{25}+\frac{11}{50}
Subtract 23 from -28 to get -51.
-\frac{1}{100}-\left(-\frac{51}{100}+\frac{2}{100}\right)-\frac{12}{25}+\frac{11}{50}
Least common multiple of 100 and 50 is 100. Convert -\frac{51}{100} and \frac{1}{50} to fractions with denominator 100.
-\frac{1}{100}-\frac{-51+2}{100}-\frac{12}{25}+\frac{11}{50}
Since -\frac{51}{100} and \frac{2}{100} have the same denominator, add them by adding their numerators.
-\frac{1}{100}-\left(-\frac{49}{100}\right)-\frac{12}{25}+\frac{11}{50}
Add -51 and 2 to get -49.
-\frac{1}{100}+\frac{49}{100}-\frac{12}{25}+\frac{11}{50}
The opposite of -\frac{49}{100} is \frac{49}{100}.
\frac{-1+49}{100}-\frac{12}{25}+\frac{11}{50}
Since -\frac{1}{100} and \frac{49}{100} have the same denominator, add them by adding their numerators.
\frac{48}{100}-\frac{12}{25}+\frac{11}{50}
Add -1 and 49 to get 48.
\frac{12}{25}-\frac{12}{25}+\frac{11}{50}
Reduce the fraction \frac{48}{100} to lowest terms by extracting and canceling out 4.
\frac{11}{50}
Subtract \frac{12}{25} from \frac{12}{25} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}