\{ \frac { 5 } { 3 } \cdot ( a + 4 ) = \frac { 2 \cdot ( a - 3 ) } { 4 } + 56
Solve for a
a=41
Share
Copied to clipboard
20\left(a+4\right)=3\times 2\left(a-3\right)+672
Multiply both sides of the equation by 12, the least common multiple of 3,4.
20a+80=3\times 2\left(a-3\right)+672
Use the distributive property to multiply 20 by a+4.
20a+80=6\left(a-3\right)+672
Multiply 3 and 2 to get 6.
20a+80=6a-18+672
Use the distributive property to multiply 6 by a-3.
20a+80=6a+654
Add -18 and 672 to get 654.
20a+80-6a=654
Subtract 6a from both sides.
14a+80=654
Combine 20a and -6a to get 14a.
14a=654-80
Subtract 80 from both sides.
14a=574
Subtract 80 from 654 to get 574.
a=\frac{574}{14}
Divide both sides by 14.
a=41
Divide 574 by 14 to get 41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}