Evaluate
\frac{213}{20}=10.65
Factor
\frac{3 \cdot 71}{2 ^ {2} \cdot 5} = 10\frac{13}{20} = 10.65
Share
Copied to clipboard
\frac{12}{5}+\frac{20+1}{10}-\left(\frac{1}{4}+\frac{3}{5}-\left(\frac{3\times 2+1}{2}+\frac{3}{4}\right)-2\right)-\frac{5}{4}+2
Multiply 2 and 10 to get 20.
\frac{12}{5}+\frac{21}{10}-\left(\frac{1}{4}+\frac{3}{5}-\left(\frac{3\times 2+1}{2}+\frac{3}{4}\right)-2\right)-\frac{5}{4}+2
Add 20 and 1 to get 21.
\frac{24}{10}+\frac{21}{10}-\left(\frac{1}{4}+\frac{3}{5}-\left(\frac{3\times 2+1}{2}+\frac{3}{4}\right)-2\right)-\frac{5}{4}+2
Least common multiple of 5 and 10 is 10. Convert \frac{12}{5} and \frac{21}{10} to fractions with denominator 10.
\frac{24+21}{10}-\left(\frac{1}{4}+\frac{3}{5}-\left(\frac{3\times 2+1}{2}+\frac{3}{4}\right)-2\right)-\frac{5}{4}+2
Since \frac{24}{10} and \frac{21}{10} have the same denominator, add them by adding their numerators.
\frac{45}{10}-\left(\frac{1}{4}+\frac{3}{5}-\left(\frac{3\times 2+1}{2}+\frac{3}{4}\right)-2\right)-\frac{5}{4}+2
Add 24 and 21 to get 45.
\frac{9}{2}-\left(\frac{1}{4}+\frac{3}{5}-\left(\frac{3\times 2+1}{2}+\frac{3}{4}\right)-2\right)-\frac{5}{4}+2
Reduce the fraction \frac{45}{10} to lowest terms by extracting and canceling out 5.
\frac{9}{2}-\left(\frac{5}{20}+\frac{12}{20}-\left(\frac{3\times 2+1}{2}+\frac{3}{4}\right)-2\right)-\frac{5}{4}+2
Least common multiple of 4 and 5 is 20. Convert \frac{1}{4} and \frac{3}{5} to fractions with denominator 20.
\frac{9}{2}-\left(\frac{5+12}{20}-\left(\frac{3\times 2+1}{2}+\frac{3}{4}\right)-2\right)-\frac{5}{4}+2
Since \frac{5}{20} and \frac{12}{20} have the same denominator, add them by adding their numerators.
\frac{9}{2}-\left(\frac{17}{20}-\left(\frac{3\times 2+1}{2}+\frac{3}{4}\right)-2\right)-\frac{5}{4}+2
Add 5 and 12 to get 17.
\frac{9}{2}-\left(\frac{17}{20}-\left(\frac{6+1}{2}+\frac{3}{4}\right)-2\right)-\frac{5}{4}+2
Multiply 3 and 2 to get 6.
\frac{9}{2}-\left(\frac{17}{20}-\left(\frac{7}{2}+\frac{3}{4}\right)-2\right)-\frac{5}{4}+2
Add 6 and 1 to get 7.
\frac{9}{2}-\left(\frac{17}{20}-\left(\frac{14}{4}+\frac{3}{4}\right)-2\right)-\frac{5}{4}+2
Least common multiple of 2 and 4 is 4. Convert \frac{7}{2} and \frac{3}{4} to fractions with denominator 4.
\frac{9}{2}-\left(\frac{17}{20}-\frac{14+3}{4}-2\right)-\frac{5}{4}+2
Since \frac{14}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{9}{2}-\left(\frac{17}{20}-\frac{17}{4}-2\right)-\frac{5}{4}+2
Add 14 and 3 to get 17.
\frac{9}{2}-\left(\frac{17}{20}-\frac{85}{20}-2\right)-\frac{5}{4}+2
Least common multiple of 20 and 4 is 20. Convert \frac{17}{20} and \frac{17}{4} to fractions with denominator 20.
\frac{9}{2}-\left(\frac{17-85}{20}-2\right)-\frac{5}{4}+2
Since \frac{17}{20} and \frac{85}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{2}-\left(\frac{-68}{20}-2\right)-\frac{5}{4}+2
Subtract 85 from 17 to get -68.
\frac{9}{2}-\left(-\frac{17}{5}-2\right)-\frac{5}{4}+2
Reduce the fraction \frac{-68}{20} to lowest terms by extracting and canceling out 4.
\frac{9}{2}-\left(-\frac{17}{5}-\frac{10}{5}\right)-\frac{5}{4}+2
Convert 2 to fraction \frac{10}{5}.
\frac{9}{2}-\frac{-17-10}{5}-\frac{5}{4}+2
Since -\frac{17}{5} and \frac{10}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{2}-\left(-\frac{27}{5}\right)-\frac{5}{4}+2
Subtract 10 from -17 to get -27.
\frac{9}{2}+\frac{27}{5}-\frac{5}{4}+2
The opposite of -\frac{27}{5} is \frac{27}{5}.
\frac{45}{10}+\frac{54}{10}-\frac{5}{4}+2
Least common multiple of 2 and 5 is 10. Convert \frac{9}{2} and \frac{27}{5} to fractions with denominator 10.
\frac{45+54}{10}-\frac{5}{4}+2
Since \frac{45}{10} and \frac{54}{10} have the same denominator, add them by adding their numerators.
\frac{99}{10}-\frac{5}{4}+2
Add 45 and 54 to get 99.
\frac{198}{20}-\frac{25}{20}+2
Least common multiple of 10 and 4 is 20. Convert \frac{99}{10} and \frac{5}{4} to fractions with denominator 20.
\frac{198-25}{20}+2
Since \frac{198}{20} and \frac{25}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{173}{20}+2
Subtract 25 from 198 to get 173.
\frac{173}{20}+\frac{40}{20}
Convert 2 to fraction \frac{40}{20}.
\frac{173+40}{20}
Since \frac{173}{20} and \frac{40}{20} have the same denominator, add them by adding their numerators.
\frac{213}{20}
Add 173 and 40 to get 213.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}