Evaluate
3x^{3}\left(x^{6}-3\right)
Expand
3x^{9}-9x^{3}
Graph
Share
Copied to clipboard
\frac{x^{6}+1-\left(x^{3}+1\right)^{2}\left(x^{3}-1\right)^{2}}{\frac{1}{2}x^{2}\left(-\frac{2}{3}\right)x}
Express \frac{\frac{x^{6}+1-\left(x^{3}+1\right)^{2}\left(x^{3}-1\right)^{2}}{\frac{1}{2}x^{2}}}{-\frac{2}{3}x} as a single fraction.
\frac{x^{6}+1-\left(x^{3}+1\right)^{2}\left(x^{3}-1\right)^{2}}{\frac{1}{2}x^{3}\left(-\frac{2}{3}\right)}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{x^{6}+1-\left(x^{3}+1\right)^{2}\left(x^{3}-1\right)^{2}}{-\frac{1}{3}x^{3}}
Multiply \frac{1}{2} and -\frac{2}{3} to get -\frac{1}{3}.
\frac{x^{6}\left(-x^{6}+3\right)}{-\frac{1}{3}x^{3}}
Factor the expressions that are not already factored.
\frac{x^{3}\left(-x^{6}+3\right)}{-\frac{1}{3}}
Cancel out x^{3} in both numerator and denominator.
\frac{-x^{9}+3x^{3}}{-\frac{1}{3}}
Expand the expression.
\frac{\left(-x^{9}+3x^{3}\right)\times 3}{-1}
Divide -x^{9}+3x^{3} by -\frac{1}{3} by multiplying -x^{9}+3x^{3} by the reciprocal of -\frac{1}{3}.
-\left(-x^{9}+3x^{3}\right)\times 3
Anything divided by -1 gives its opposite.
-\left(-3x^{9}+9x^{3}\right)
Use the distributive property to multiply -x^{9}+3x^{3} by 3.
3x^{9}-9x^{3}
To find the opposite of -3x^{9}+9x^{3}, find the opposite of each term.
\frac{x^{6}+1-\left(x^{3}+1\right)^{2}\left(x^{3}-1\right)^{2}}{\frac{1}{2}x^{2}\left(-\frac{2}{3}\right)x}
Express \frac{\frac{x^{6}+1-\left(x^{3}+1\right)^{2}\left(x^{3}-1\right)^{2}}{\frac{1}{2}x^{2}}}{-\frac{2}{3}x} as a single fraction.
\frac{x^{6}+1-\left(x^{3}+1\right)^{2}\left(x^{3}-1\right)^{2}}{\frac{1}{2}x^{3}\left(-\frac{2}{3}\right)}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{x^{6}+1-\left(x^{3}+1\right)^{2}\left(x^{3}-1\right)^{2}}{-\frac{1}{3}x^{3}}
Multiply \frac{1}{2} and -\frac{2}{3} to get -\frac{1}{3}.
\frac{x^{6}\left(-x^{6}+3\right)}{-\frac{1}{3}x^{3}}
Factor the expressions that are not already factored.
\frac{x^{3}\left(-x^{6}+3\right)}{-\frac{1}{3}}
Cancel out x^{3} in both numerator and denominator.
\frac{-x^{9}+3x^{3}}{-\frac{1}{3}}
Expand the expression.
\frac{\left(-x^{9}+3x^{3}\right)\times 3}{-1}
Divide -x^{9}+3x^{3} by -\frac{1}{3} by multiplying -x^{9}+3x^{3} by the reciprocal of -\frac{1}{3}.
-\left(-x^{9}+3x^{3}\right)\times 3
Anything divided by -1 gives its opposite.
-\left(-3x^{9}+9x^{3}\right)
Use the distributive property to multiply -x^{9}+3x^{3} by 3.
3x^{9}-9x^{3}
To find the opposite of -3x^{9}+9x^{3}, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}