Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{17-\left(\left(\sqrt{5}\right)^{2}-4\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}\right)}{\sqrt{3}}-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-2\sqrt{3}\right)^{2}.
\left(\frac{17-\left(5-4\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}\right)}{\sqrt{3}}-1\right)^{2}
The square of \sqrt{5} is 5.
\left(\frac{17-\left(5-4\sqrt{15}+4\left(\sqrt{3}\right)^{2}\right)}{\sqrt{3}}-1\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\left(\frac{17-\left(5-4\sqrt{15}+4\times 3\right)}{\sqrt{3}}-1\right)^{2}
The square of \sqrt{3} is 3.
\left(\frac{17-\left(5-4\sqrt{15}+12\right)}{\sqrt{3}}-1\right)^{2}
Multiply 4 and 3 to get 12.
\left(\frac{17-\left(17-4\sqrt{15}\right)}{\sqrt{3}}-1\right)^{2}
Add 5 and 12 to get 17.
\left(\frac{17-17+4\sqrt{15}}{\sqrt{3}}-1\right)^{2}
To find the opposite of 17-4\sqrt{15}, find the opposite of each term.
\left(\frac{4\sqrt{15}}{\sqrt{3}}-1\right)^{2}
Subtract 17 from 17 to get 0.
\left(\frac{4\sqrt{15}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-1\right)^{2}
Rationalize the denominator of \frac{4\sqrt{15}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\frac{4\sqrt{15}\sqrt{3}}{3}-1\right)^{2}
The square of \sqrt{3} is 3.
\left(\frac{4\sqrt{3}\sqrt{5}\sqrt{3}}{3}-1\right)^{2}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\left(\frac{4\times 3\sqrt{5}}{3}-1\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\left(4\sqrt{5}-1\right)^{2}
Cancel out 3 and 3.
16\left(\sqrt{5}\right)^{2}-8\sqrt{5}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4\sqrt{5}-1\right)^{2}.
16\times 5-8\sqrt{5}+1
The square of \sqrt{5} is 5.
80-8\sqrt{5}+1
Multiply 16 and 5 to get 80.
81-8\sqrt{5}
Add 80 and 1 to get 81.
\left(\frac{17-\left(\left(\sqrt{5}\right)^{2}-4\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}\right)}{\sqrt{3}}-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-2\sqrt{3}\right)^{2}.
\left(\frac{17-\left(5-4\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}\right)}{\sqrt{3}}-1\right)^{2}
The square of \sqrt{5} is 5.
\left(\frac{17-\left(5-4\sqrt{15}+4\left(\sqrt{3}\right)^{2}\right)}{\sqrt{3}}-1\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\left(\frac{17-\left(5-4\sqrt{15}+4\times 3\right)}{\sqrt{3}}-1\right)^{2}
The square of \sqrt{3} is 3.
\left(\frac{17-\left(5-4\sqrt{15}+12\right)}{\sqrt{3}}-1\right)^{2}
Multiply 4 and 3 to get 12.
\left(\frac{17-\left(17-4\sqrt{15}\right)}{\sqrt{3}}-1\right)^{2}
Add 5 and 12 to get 17.
\left(\frac{17-17+4\sqrt{15}}{\sqrt{3}}-1\right)^{2}
To find the opposite of 17-4\sqrt{15}, find the opposite of each term.
\left(\frac{4\sqrt{15}}{\sqrt{3}}-1\right)^{2}
Subtract 17 from 17 to get 0.
\left(\frac{4\sqrt{15}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-1\right)^{2}
Rationalize the denominator of \frac{4\sqrt{15}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\frac{4\sqrt{15}\sqrt{3}}{3}-1\right)^{2}
The square of \sqrt{3} is 3.
\left(\frac{4\sqrt{3}\sqrt{5}\sqrt{3}}{3}-1\right)^{2}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\left(\frac{4\times 3\sqrt{5}}{3}-1\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\left(4\sqrt{5}-1\right)^{2}
Cancel out 3 and 3.
16\left(\sqrt{5}\right)^{2}-8\sqrt{5}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4\sqrt{5}-1\right)^{2}.
16\times 5-8\sqrt{5}+1
The square of \sqrt{5} is 5.
80-8\sqrt{5}+1
Multiply 16 and 5 to get 80.
81-8\sqrt{5}
Add 80 and 1 to get 81.