Evaluate
\frac{4}{9}\approx 0.444444444
Factor
\frac{2 ^ {2}}{3 ^ {2}} = 0.4444444444444444
Share
Copied to clipboard
\frac{\left(\left(\frac{\left(-\left(-\frac{4}{3}\right)^{4}\right)\left(-1-\frac{1}{3}\right)}{\left(-\frac{4}{3}\right)^{3}}+\frac{2}{3}\right)\left(2-\frac{7}{5}\right)\right)^{5}}{\frac{\left(\frac{4}{9}\right)^{3}}{\left(-\frac{2}{3}\right)^{3}}}
Subtract 2 from \frac{2}{3} to get -\frac{4}{3}.
\frac{\left(\left(\frac{-\frac{256}{81}\left(-1-\frac{1}{3}\right)}{\left(-\frac{4}{3}\right)^{3}}+\frac{2}{3}\right)\left(2-\frac{7}{5}\right)\right)^{5}}{\frac{\left(\frac{4}{9}\right)^{3}}{\left(-\frac{2}{3}\right)^{3}}}
Calculate -\frac{4}{3} to the power of 4 and get \frac{256}{81}.
\frac{\left(\left(\frac{-\frac{256}{81}\left(-\frac{4}{3}\right)}{\left(-\frac{4}{3}\right)^{3}}+\frac{2}{3}\right)\left(2-\frac{7}{5}\right)\right)^{5}}{\frac{\left(\frac{4}{9}\right)^{3}}{\left(-\frac{2}{3}\right)^{3}}}
Subtract \frac{1}{3} from -1 to get -\frac{4}{3}.
\frac{\left(\left(\frac{\frac{1024}{243}}{\left(-\frac{4}{3}\right)^{3}}+\frac{2}{3}\right)\left(2-\frac{7}{5}\right)\right)^{5}}{\frac{\left(\frac{4}{9}\right)^{3}}{\left(-\frac{2}{3}\right)^{3}}}
Multiply -\frac{256}{81} and -\frac{4}{3} to get \frac{1024}{243}.
\frac{\left(\left(\frac{\frac{1024}{243}}{-\frac{64}{27}}+\frac{2}{3}\right)\left(2-\frac{7}{5}\right)\right)^{5}}{\frac{\left(\frac{4}{9}\right)^{3}}{\left(-\frac{2}{3}\right)^{3}}}
Calculate -\frac{4}{3} to the power of 3 and get -\frac{64}{27}.
\frac{\left(\left(\frac{1024}{243}\left(-\frac{27}{64}\right)+\frac{2}{3}\right)\left(2-\frac{7}{5}\right)\right)^{5}}{\frac{\left(\frac{4}{9}\right)^{3}}{\left(-\frac{2}{3}\right)^{3}}}
Divide \frac{1024}{243} by -\frac{64}{27} by multiplying \frac{1024}{243} by the reciprocal of -\frac{64}{27}.
\frac{\left(\left(-\frac{16}{9}+\frac{2}{3}\right)\left(2-\frac{7}{5}\right)\right)^{5}}{\frac{\left(\frac{4}{9}\right)^{3}}{\left(-\frac{2}{3}\right)^{3}}}
Multiply \frac{1024}{243} and -\frac{27}{64} to get -\frac{16}{9}.
\frac{\left(-\frac{10}{9}\left(2-\frac{7}{5}\right)\right)^{5}}{\frac{\left(\frac{4}{9}\right)^{3}}{\left(-\frac{2}{3}\right)^{3}}}
Add -\frac{16}{9} and \frac{2}{3} to get -\frac{10}{9}.
\frac{\left(-\frac{10}{9}\times \frac{3}{5}\right)^{5}}{\frac{\left(\frac{4}{9}\right)^{3}}{\left(-\frac{2}{3}\right)^{3}}}
Subtract \frac{7}{5} from 2 to get \frac{3}{5}.
\frac{\left(-\frac{2}{3}\right)^{5}}{\frac{\left(\frac{4}{9}\right)^{3}}{\left(-\frac{2}{3}\right)^{3}}}
Multiply -\frac{10}{9} and \frac{3}{5} to get -\frac{2}{3}.
\frac{-\frac{32}{243}}{\frac{\left(\frac{4}{9}\right)^{3}}{\left(-\frac{2}{3}\right)^{3}}}
Calculate -\frac{2}{3} to the power of 5 and get -\frac{32}{243}.
\frac{-\frac{32}{243}}{\frac{\frac{64}{729}}{\left(-\frac{2}{3}\right)^{3}}}
Calculate \frac{4}{9} to the power of 3 and get \frac{64}{729}.
\frac{-\frac{32}{243}}{\frac{\frac{64}{729}}{-\frac{8}{27}}}
Calculate -\frac{2}{3} to the power of 3 and get -\frac{8}{27}.
\frac{-\frac{32}{243}}{\frac{64}{729}\left(-\frac{27}{8}\right)}
Divide \frac{64}{729} by -\frac{8}{27} by multiplying \frac{64}{729} by the reciprocal of -\frac{8}{27}.
\frac{-\frac{32}{243}}{-\frac{8}{27}}
Multiply \frac{64}{729} and -\frac{27}{8} to get -\frac{8}{27}.
-\frac{32}{243}\left(-\frac{27}{8}\right)
Divide -\frac{32}{243} by -\frac{8}{27} by multiplying -\frac{32}{243} by the reciprocal of -\frac{8}{27}.
\frac{4}{9}
Multiply -\frac{32}{243} and -\frac{27}{8} to get \frac{4}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}