Evaluate
\frac{1012}{7}+\frac{2400}{7a}
Expand
\frac{1012}{7}+\frac{2400}{7a}
Share
Copied to clipboard
\left(\frac{\left(\frac{8}{a}+3\right)\times 5}{7\times \frac{3}{15}}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
Divide \frac{\frac{8}{a}+3}{7} by \frac{\frac{3}{15}}{5} by multiplying \frac{\frac{8}{a}+3}{7} by the reciprocal of \frac{\frac{3}{15}}{5}.
\left(\frac{\left(\frac{8}{a}+\frac{3a}{a}\right)\times 5}{7\times \frac{3}{15}}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{a}{a}.
\left(\frac{\frac{8+3a}{a}\times 5}{7\times \frac{3}{15}}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
Since \frac{8}{a} and \frac{3a}{a} have the same denominator, add them by adding their numerators.
\left(\frac{\frac{\left(8+3a\right)\times 5}{a}}{7\times \frac{3}{15}}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
Express \frac{8+3a}{a}\times 5 as a single fraction.
\left(\frac{\frac{\left(8+3a\right)\times 5}{a}}{7\times \frac{1}{5}}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
Reduce the fraction \frac{3}{15} to lowest terms by extracting and canceling out 3.
\left(\frac{\frac{\left(8+3a\right)\times 5}{a}}{\frac{7}{5}}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
Multiply 7 and \frac{1}{5} to get \frac{7}{5}.
\left(\frac{\left(8+3a\right)\times 5\times 5}{a\times 7}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
Divide \frac{\left(8+3a\right)\times 5}{a} by \frac{7}{5} by multiplying \frac{\left(8+3a\right)\times 5}{a} by the reciprocal of \frac{7}{5}.
\left(\frac{\left(8+3a\right)\times 25}{a\times 7}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
Multiply 5 and 5 to get 25.
\left(\frac{\left(8+3a\right)\times 25}{a\times 7}\times 6-\frac{19-7}{6}\right)\times 2+20
Multiply 3 and 2 to get 6.
\left(\frac{\left(8+3a\right)\times 25\times 6}{a\times 7}-\frac{19-7}{6}\right)\times 2+20
Express \frac{\left(8+3a\right)\times 25}{a\times 7}\times 6 as a single fraction.
\left(\frac{\left(8+3a\right)\times 25\times 6}{a\times 7}-\frac{12}{6}\right)\times 2+20
Subtract 7 from 19 to get 12.
\left(\frac{\left(8+3a\right)\times 25\times 6}{a\times 7}-2\right)\times 2+20
Divide 12 by 6 to get 2.
\left(\frac{\left(8+3a\right)\times 25\times 6}{a\times 7}-\frac{2a\times 7}{a\times 7}\right)\times 2+20
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{a\times 7}{a\times 7}.
\frac{\left(8+3a\right)\times 25\times 6-2a\times 7}{a\times 7}\times 2+20
Since \frac{\left(8+3a\right)\times 25\times 6}{a\times 7} and \frac{2a\times 7}{a\times 7} have the same denominator, subtract them by subtracting their numerators.
\frac{1200+450a-14a}{a\times 7}\times 2+20
Do the multiplications in \left(8+3a\right)\times 25\times 6-2a\times 7.
\frac{1200+436a}{a\times 7}\times 2+20
Combine like terms in 1200+450a-14a.
\frac{\left(1200+436a\right)\times 2}{a\times 7}+20
Express \frac{1200+436a}{a\times 7}\times 2 as a single fraction.
\frac{\left(1200+436a\right)\times 2}{a\times 7}+\frac{20a\times 7}{a\times 7}
To add or subtract expressions, expand them to make their denominators the same. Multiply 20 times \frac{a\times 7}{a\times 7}.
\frac{\left(1200+436a\right)\times 2+20a\times 7}{a\times 7}
Since \frac{\left(1200+436a\right)\times 2}{a\times 7} and \frac{20a\times 7}{a\times 7} have the same denominator, add them by adding their numerators.
\frac{2400+872a+140a}{a\times 7}
Do the multiplications in \left(1200+436a\right)\times 2+20a\times 7.
\frac{2400+1012a}{a\times 7}
Combine like terms in 2400+872a+140a.
\left(\frac{\left(\frac{8}{a}+3\right)\times 5}{7\times \frac{3}{15}}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
Divide \frac{\frac{8}{a}+3}{7} by \frac{\frac{3}{15}}{5} by multiplying \frac{\frac{8}{a}+3}{7} by the reciprocal of \frac{\frac{3}{15}}{5}.
\left(\frac{\left(\frac{8}{a}+\frac{3a}{a}\right)\times 5}{7\times \frac{3}{15}}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{a}{a}.
\left(\frac{\frac{8+3a}{a}\times 5}{7\times \frac{3}{15}}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
Since \frac{8}{a} and \frac{3a}{a} have the same denominator, add them by adding their numerators.
\left(\frac{\frac{\left(8+3a\right)\times 5}{a}}{7\times \frac{3}{15}}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
Express \frac{8+3a}{a}\times 5 as a single fraction.
\left(\frac{\frac{\left(8+3a\right)\times 5}{a}}{7\times \frac{1}{5}}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
Reduce the fraction \frac{3}{15} to lowest terms by extracting and canceling out 3.
\left(\frac{\frac{\left(8+3a\right)\times 5}{a}}{\frac{7}{5}}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
Multiply 7 and \frac{1}{5} to get \frac{7}{5}.
\left(\frac{\left(8+3a\right)\times 5\times 5}{a\times 7}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
Divide \frac{\left(8+3a\right)\times 5}{a} by \frac{7}{5} by multiplying \frac{\left(8+3a\right)\times 5}{a} by the reciprocal of \frac{7}{5}.
\left(\frac{\left(8+3a\right)\times 25}{a\times 7}\times 3\times 2-\frac{19-7}{6}\right)\times 2+20
Multiply 5 and 5 to get 25.
\left(\frac{\left(8+3a\right)\times 25}{a\times 7}\times 6-\frac{19-7}{6}\right)\times 2+20
Multiply 3 and 2 to get 6.
\left(\frac{\left(8+3a\right)\times 25\times 6}{a\times 7}-\frac{19-7}{6}\right)\times 2+20
Express \frac{\left(8+3a\right)\times 25}{a\times 7}\times 6 as a single fraction.
\left(\frac{\left(8+3a\right)\times 25\times 6}{a\times 7}-\frac{12}{6}\right)\times 2+20
Subtract 7 from 19 to get 12.
\left(\frac{\left(8+3a\right)\times 25\times 6}{a\times 7}-2\right)\times 2+20
Divide 12 by 6 to get 2.
\left(\frac{\left(8+3a\right)\times 25\times 6}{a\times 7}-\frac{2a\times 7}{a\times 7}\right)\times 2+20
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{a\times 7}{a\times 7}.
\frac{\left(8+3a\right)\times 25\times 6-2a\times 7}{a\times 7}\times 2+20
Since \frac{\left(8+3a\right)\times 25\times 6}{a\times 7} and \frac{2a\times 7}{a\times 7} have the same denominator, subtract them by subtracting their numerators.
\frac{1200+450a-14a}{a\times 7}\times 2+20
Do the multiplications in \left(8+3a\right)\times 25\times 6-2a\times 7.
\frac{1200+436a}{a\times 7}\times 2+20
Combine like terms in 1200+450a-14a.
\frac{\left(1200+436a\right)\times 2}{a\times 7}+20
Express \frac{1200+436a}{a\times 7}\times 2 as a single fraction.
\frac{\left(1200+436a\right)\times 2}{a\times 7}+\frac{20a\times 7}{a\times 7}
To add or subtract expressions, expand them to make their denominators the same. Multiply 20 times \frac{a\times 7}{a\times 7}.
\frac{\left(1200+436a\right)\times 2+20a\times 7}{a\times 7}
Since \frac{\left(1200+436a\right)\times 2}{a\times 7} and \frac{20a\times 7}{a\times 7} have the same denominator, add them by adding their numerators.
\frac{2400+872a+140a}{a\times 7}
Do the multiplications in \left(1200+436a\right)\times 2+20a\times 7.
\frac{2400+1012a}{a\times 7}
Combine like terms in 2400+872a+140a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}