Evaluate
-\frac{309}{40}=-7.725
Factor
-\frac{309}{40} = -7\frac{29}{40} = -7.725
Share
Copied to clipboard
\frac{\frac{-\frac{3}{20}-\frac{5}{20}+\frac{6}{5}+\left(-\frac{5}{4}\right)^{2}\left(-\frac{4}{25}\right)}{-1+\frac{1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Least common multiple of 20 and 4 is 20. Convert -\frac{3}{20} and \frac{1}{4} to fractions with denominator 20.
\frac{\frac{\frac{-3-5}{20}+\frac{6}{5}+\left(-\frac{5}{4}\right)^{2}\left(-\frac{4}{25}\right)}{-1+\frac{1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Since -\frac{3}{20} and \frac{5}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\frac{-8}{20}+\frac{6}{5}+\left(-\frac{5}{4}\right)^{2}\left(-\frac{4}{25}\right)}{-1+\frac{1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Subtract 5 from -3 to get -8.
\frac{\frac{-\frac{2}{5}+\frac{6}{5}+\left(-\frac{5}{4}\right)^{2}\left(-\frac{4}{25}\right)}{-1+\frac{1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Reduce the fraction \frac{-8}{20} to lowest terms by extracting and canceling out 4.
\frac{\frac{\frac{-2+6}{5}+\left(-\frac{5}{4}\right)^{2}\left(-\frac{4}{25}\right)}{-1+\frac{1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Since -\frac{2}{5} and \frac{6}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{4}{5}+\left(-\frac{5}{4}\right)^{2}\left(-\frac{4}{25}\right)}{-1+\frac{1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Add -2 and 6 to get 4.
\frac{\frac{\frac{4}{5}+\frac{25}{16}\left(-\frac{4}{25}\right)}{-1+\frac{1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Calculate -\frac{5}{4} to the power of 2 and get \frac{25}{16}.
\frac{\frac{\frac{4}{5}+\frac{25\left(-4\right)}{16\times 25}}{-1+\frac{1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Multiply \frac{25}{16} times -\frac{4}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\frac{4}{5}+\frac{-4}{16}}{-1+\frac{1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Cancel out 25 in both numerator and denominator.
\frac{\frac{\frac{4}{5}-\frac{1}{4}}{-1+\frac{1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Reduce the fraction \frac{-4}{16} to lowest terms by extracting and canceling out 4.
\frac{\frac{\frac{16}{20}-\frac{5}{20}}{-1+\frac{1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Least common multiple of 5 and 4 is 20. Convert \frac{4}{5} and \frac{1}{4} to fractions with denominator 20.
\frac{\frac{\frac{16-5}{20}}{-1+\frac{1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Since \frac{16}{20} and \frac{5}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\frac{11}{20}}{-1+\frac{1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Subtract 5 from 16 to get 11.
\frac{\frac{\frac{11}{20}}{-\frac{3}{3}+\frac{1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Convert -1 to fraction -\frac{3}{3}.
\frac{\frac{\frac{11}{20}}{\frac{-3+1}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Since -\frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{11}{20}}{-\frac{2}{3}}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Add -3 and 1 to get -2.
\frac{\frac{11}{20}\left(-\frac{3}{2}\right)}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Divide \frac{11}{20} by -\frac{2}{3} by multiplying \frac{11}{20} by the reciprocal of -\frac{2}{3}.
\frac{\frac{11\left(-3\right)}{20\times 2}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Multiply \frac{11}{20} times -\frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-33}{40}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Do the multiplications in the fraction \frac{11\left(-3\right)}{20\times 2}.
\frac{-\frac{33}{40}}{\left(-\frac{1}{3}\right)^{2}}-\frac{3}{10}
Fraction \frac{-33}{40} can be rewritten as -\frac{33}{40} by extracting the negative sign.
\frac{-\frac{33}{40}}{\frac{1}{9}}-\frac{3}{10}
Calculate -\frac{1}{3} to the power of 2 and get \frac{1}{9}.
-\frac{33}{40}\times 9-\frac{3}{10}
Divide -\frac{33}{40} by \frac{1}{9} by multiplying -\frac{33}{40} by the reciprocal of \frac{1}{9}.
\frac{-33\times 9}{40}-\frac{3}{10}
Express -\frac{33}{40}\times 9 as a single fraction.
\frac{-297}{40}-\frac{3}{10}
Multiply -33 and 9 to get -297.
-\frac{297}{40}-\frac{3}{10}
Fraction \frac{-297}{40} can be rewritten as -\frac{297}{40} by extracting the negative sign.
-\frac{297}{40}-\frac{12}{40}
Least common multiple of 40 and 10 is 40. Convert -\frac{297}{40} and \frac{3}{10} to fractions with denominator 40.
\frac{-297-12}{40}
Since -\frac{297}{40} and \frac{12}{40} have the same denominator, subtract them by subtracting their numerators.
-\frac{309}{40}
Subtract 12 from -297 to get -309.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}