Evaluate
\frac{16}{9}\approx 1.777777778
Factor
\frac{2 ^ {4}}{3 ^ {2}} = 1\frac{7}{9} = 1.7777777777777777
Share
Copied to clipboard
\frac{\left(\frac{5}{6}-\frac{4}{6}\right)\times \frac{6}{5}}{\frac{1}{15}+\frac{1}{3}+\frac{3}{5}}\left(\frac{\frac{8}{15}}{\frac{4}{5}}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Least common multiple of 6 and 3 is 6. Convert \frac{5}{6} and \frac{2}{3} to fractions with denominator 6.
\frac{\frac{5-4}{6}\times \frac{6}{5}}{\frac{1}{15}+\frac{1}{3}+\frac{3}{5}}\left(\frac{\frac{8}{15}}{\frac{4}{5}}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Since \frac{5}{6} and \frac{4}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{6}\times \frac{6}{5}}{\frac{1}{15}+\frac{1}{3}+\frac{3}{5}}\left(\frac{\frac{8}{15}}{\frac{4}{5}}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Subtract 4 from 5 to get 1.
\frac{\frac{1\times 6}{6\times 5}}{\frac{1}{15}+\frac{1}{3}+\frac{3}{5}}\left(\frac{\frac{8}{15}}{\frac{4}{5}}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Multiply \frac{1}{6} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{5}}{\frac{1}{15}+\frac{1}{3}+\frac{3}{5}}\left(\frac{\frac{8}{15}}{\frac{4}{5}}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Cancel out 6 in both numerator and denominator.
\frac{\frac{1}{5}}{\frac{1}{15}+\frac{5}{15}+\frac{3}{5}}\left(\frac{\frac{8}{15}}{\frac{4}{5}}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Least common multiple of 15 and 3 is 15. Convert \frac{1}{15} and \frac{1}{3} to fractions with denominator 15.
\frac{\frac{1}{5}}{\frac{1+5}{15}+\frac{3}{5}}\left(\frac{\frac{8}{15}}{\frac{4}{5}}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Since \frac{1}{15} and \frac{5}{15} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{5}}{\frac{6}{15}+\frac{3}{5}}\left(\frac{\frac{8}{15}}{\frac{4}{5}}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Add 1 and 5 to get 6.
\frac{\frac{1}{5}}{\frac{2}{5}+\frac{3}{5}}\left(\frac{\frac{8}{15}}{\frac{4}{5}}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Reduce the fraction \frac{6}{15} to lowest terms by extracting and canceling out 3.
\frac{\frac{1}{5}}{\frac{2+3}{5}}\left(\frac{\frac{8}{15}}{\frac{4}{5}}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Since \frac{2}{5} and \frac{3}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{5}}{\frac{5}{5}}\left(\frac{\frac{8}{15}}{\frac{4}{5}}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Add 2 and 3 to get 5.
\frac{\frac{1}{5}}{1}\left(\frac{\frac{8}{15}}{\frac{4}{5}}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Divide 5 by 5 to get 1.
\frac{1}{5}\left(\frac{\frac{8}{15}}{\frac{4}{5}}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Anything divided by one gives itself.
\frac{1}{5}\left(\frac{8}{15}\times \frac{5}{4}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Divide \frac{8}{15} by \frac{4}{5} by multiplying \frac{8}{15} by the reciprocal of \frac{4}{5}.
\frac{1}{5}\left(\frac{8\times 5}{15\times 4}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Multiply \frac{8}{15} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}\left(\frac{40}{60}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Do the multiplications in the fraction \frac{8\times 5}{15\times 4}.
\frac{1}{5}\left(\frac{2}{3}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Reduce the fraction \frac{40}{60} to lowest terms by extracting and canceling out 20.
\frac{1}{5}\left(\frac{6}{9}-\frac{1}{9}\right)\times \frac{5}{2}\times \frac{32}{5}
Least common multiple of 3 and 9 is 9. Convert \frac{2}{3} and \frac{1}{9} to fractions with denominator 9.
\frac{1}{5}\times \frac{6-1}{9}\times \frac{5}{2}\times \frac{32}{5}
Since \frac{6}{9} and \frac{1}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{5}\times \frac{5}{9}\times \frac{5}{2}\times \frac{32}{5}
Subtract 1 from 6 to get 5.
\frac{1\times 5}{5\times 9}\times \frac{5}{2}\times \frac{32}{5}
Multiply \frac{1}{5} times \frac{5}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{9}\times \frac{5}{2}\times \frac{32}{5}
Cancel out 5 in both numerator and denominator.
\frac{1\times 5}{9\times 2}\times \frac{32}{5}
Multiply \frac{1}{9} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{18}\times \frac{32}{5}
Do the multiplications in the fraction \frac{1\times 5}{9\times 2}.
\frac{5\times 32}{18\times 5}
Multiply \frac{5}{18} times \frac{32}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{32}{18}
Cancel out 5 in both numerator and denominator.
\frac{16}{9}
Reduce the fraction \frac{32}{18} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}