Solve for x
x=\frac{\sqrt{37}}{6}+\frac{2}{3}\approx 1.680460422
x=-\frac{\sqrt{37}}{6}+\frac{2}{3}\approx -0.347127088
Graph
Share
Copied to clipboard
8x\left(2-x\right)-\left(4x^{2}-7\right)=0
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)^{2}.
16x-8x^{2}-\left(4x^{2}-7\right)=0
Use the distributive property to multiply 8x by 2-x.
16x-8x^{2}-4x^{2}+7=0
To find the opposite of 4x^{2}-7, find the opposite of each term.
16x-12x^{2}+7=0
Combine -8x^{2} and -4x^{2} to get -12x^{2}.
-12x^{2}+16x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-12\right)\times 7}}{2\left(-12\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -12 for a, 16 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-12\right)\times 7}}{2\left(-12\right)}
Square 16.
x=\frac{-16±\sqrt{256+48\times 7}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-16±\sqrt{256+336}}{2\left(-12\right)}
Multiply 48 times 7.
x=\frac{-16±\sqrt{592}}{2\left(-12\right)}
Add 256 to 336.
x=\frac{-16±4\sqrt{37}}{2\left(-12\right)}
Take the square root of 592.
x=\frac{-16±4\sqrt{37}}{-24}
Multiply 2 times -12.
x=\frac{4\sqrt{37}-16}{-24}
Now solve the equation x=\frac{-16±4\sqrt{37}}{-24} when ± is plus. Add -16 to 4\sqrt{37}.
x=-\frac{\sqrt{37}}{6}+\frac{2}{3}
Divide -16+4\sqrt{37} by -24.
x=\frac{-4\sqrt{37}-16}{-24}
Now solve the equation x=\frac{-16±4\sqrt{37}}{-24} when ± is minus. Subtract 4\sqrt{37} from -16.
x=\frac{\sqrt{37}}{6}+\frac{2}{3}
Divide -16-4\sqrt{37} by -24.
x=-\frac{\sqrt{37}}{6}+\frac{2}{3} x=\frac{\sqrt{37}}{6}+\frac{2}{3}
The equation is now solved.
8x\left(2-x\right)-\left(4x^{2}-7\right)=0
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)^{2}.
16x-8x^{2}-\left(4x^{2}-7\right)=0
Use the distributive property to multiply 8x by 2-x.
16x-8x^{2}-4x^{2}+7=0
To find the opposite of 4x^{2}-7, find the opposite of each term.
16x-12x^{2}+7=0
Combine -8x^{2} and -4x^{2} to get -12x^{2}.
16x-12x^{2}=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
-12x^{2}+16x=-7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-12x^{2}+16x}{-12}=-\frac{7}{-12}
Divide both sides by -12.
x^{2}+\frac{16}{-12}x=-\frac{7}{-12}
Dividing by -12 undoes the multiplication by -12.
x^{2}-\frac{4}{3}x=-\frac{7}{-12}
Reduce the fraction \frac{16}{-12} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{4}{3}x=\frac{7}{12}
Divide -7 by -12.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{7}{12}+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{7}{12}+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{37}{36}
Add \frac{7}{12} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{3}\right)^{2}=\frac{37}{36}
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{37}{36}}
Take the square root of both sides of the equation.
x-\frac{2}{3}=\frac{\sqrt{37}}{6} x-\frac{2}{3}=-\frac{\sqrt{37}}{6}
Simplify.
x=\frac{\sqrt{37}}{6}+\frac{2}{3} x=-\frac{\sqrt{37}}{6}+\frac{2}{3}
Add \frac{2}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}