Solve for z
z=\frac{-16x^{2}-35x-12}{11}
Solve for x
x=\frac{-\sqrt{457-704z}-35}{32}
x=\frac{\sqrt{457-704z}-35}{32}\text{, }z\leq \frac{457}{704}
Share
Copied to clipboard
3x-22x-11z-\left(x+1\right)\times 16x-5=7
Use the distributive property to multiply -11 by 2x+z.
-19x-11z-\left(x+1\right)\times 16x-5=7
Combine 3x and -22x to get -19x.
-19x-11z-\left(16x+16\right)x-5=7
Use the distributive property to multiply x+1 by 16.
-19x-11z-\left(16x^{2}+16x\right)-5=7
Use the distributive property to multiply 16x+16 by x.
-19x-11z-16x^{2}-16x-5=7
To find the opposite of 16x^{2}+16x, find the opposite of each term.
-35x-11z-16x^{2}-5=7
Combine -19x and -16x to get -35x.
-11z-16x^{2}-5=7+35x
Add 35x to both sides.
-11z-5=7+35x+16x^{2}
Add 16x^{2} to both sides.
-11z=7+35x+16x^{2}+5
Add 5 to both sides.
-11z=12+35x+16x^{2}
Add 7 and 5 to get 12.
-11z=16x^{2}+35x+12
The equation is in standard form.
\frac{-11z}{-11}=\frac{16x^{2}+35x+12}{-11}
Divide both sides by -11.
z=\frac{16x^{2}+35x+12}{-11}
Dividing by -11 undoes the multiplication by -11.
z=\frac{-16x^{2}-35x-12}{11}
Divide 12+35x+16x^{2} by -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}