Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(3x-\left(\frac{1}{4}x^{2}+3x+9\right)\right)^{2}+\frac{2}{3}x^{3}\left(\frac{1}{2}x-6\right)-\left(-5\right)^{3}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}x+3\right)^{2}.
\left(3x-\frac{1}{4}x^{2}-3x-9\right)^{2}+\frac{2}{3}x^{3}\left(\frac{1}{2}x-6\right)-\left(-5\right)^{3}
To find the opposite of \frac{1}{4}x^{2}+3x+9, find the opposite of each term.
\left(-\frac{1}{4}x^{2}-9\right)^{2}+\frac{2}{3}x^{3}\left(\frac{1}{2}x-6\right)-\left(-5\right)^{3}
Combine 3x and -3x to get 0.
\frac{1}{16}\left(x^{2}\right)^{2}+\frac{9}{2}x^{2}+81+\frac{2}{3}x^{3}\left(\frac{1}{2}x-6\right)-\left(-5\right)^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-\frac{1}{4}x^{2}-9\right)^{2}.
\frac{1}{16}x^{4}+\frac{9}{2}x^{2}+81+\frac{2}{3}x^{3}\left(\frac{1}{2}x-6\right)-\left(-5\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{1}{16}x^{4}+\frac{9}{2}x^{2}+81+\frac{1}{3}x^{4}-4x^{3}-\left(-5\right)^{3}
Use the distributive property to multiply \frac{2}{3}x^{3} by \frac{1}{2}x-6.
\frac{19}{48}x^{4}+\frac{9}{2}x^{2}+81-4x^{3}-\left(-5\right)^{3}
Combine \frac{1}{16}x^{4} and \frac{1}{3}x^{4} to get \frac{19}{48}x^{4}.
\frac{19}{48}x^{4}+\frac{9}{2}x^{2}+81-4x^{3}-\left(-125\right)
Calculate -5 to the power of 3 and get -125.
\frac{19}{48}x^{4}+\frac{9}{2}x^{2}+81-4x^{3}+125
The opposite of -125 is 125.
\frac{19}{48}x^{4}+\frac{9}{2}x^{2}+206-4x^{3}
Add 81 and 125 to get 206.
\left(3x-\left(\frac{1}{4}x^{2}+3x+9\right)\right)^{2}+\frac{2}{3}x^{3}\left(\frac{1}{2}x-6\right)-\left(-5\right)^{3}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}x+3\right)^{2}.
\left(3x-\frac{1}{4}x^{2}-3x-9\right)^{2}+\frac{2}{3}x^{3}\left(\frac{1}{2}x-6\right)-\left(-5\right)^{3}
To find the opposite of \frac{1}{4}x^{2}+3x+9, find the opposite of each term.
\left(-\frac{1}{4}x^{2}-9\right)^{2}+\frac{2}{3}x^{3}\left(\frac{1}{2}x-6\right)-\left(-5\right)^{3}
Combine 3x and -3x to get 0.
\frac{1}{16}\left(x^{2}\right)^{2}+\frac{9}{2}x^{2}+81+\frac{2}{3}x^{3}\left(\frac{1}{2}x-6\right)-\left(-5\right)^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-\frac{1}{4}x^{2}-9\right)^{2}.
\frac{1}{16}x^{4}+\frac{9}{2}x^{2}+81+\frac{2}{3}x^{3}\left(\frac{1}{2}x-6\right)-\left(-5\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{1}{16}x^{4}+\frac{9}{2}x^{2}+81+\frac{1}{3}x^{4}-4x^{3}-\left(-5\right)^{3}
Use the distributive property to multiply \frac{2}{3}x^{3} by \frac{1}{2}x-6.
\frac{19}{48}x^{4}+\frac{9}{2}x^{2}+81-4x^{3}-\left(-5\right)^{3}
Combine \frac{1}{16}x^{4} and \frac{1}{3}x^{4} to get \frac{19}{48}x^{4}.
\frac{19}{48}x^{4}+\frac{9}{2}x^{2}+81-4x^{3}-\left(-125\right)
Calculate -5 to the power of 3 and get -125.
\frac{19}{48}x^{4}+\frac{9}{2}x^{2}+81-4x^{3}+125
The opposite of -125 is 125.
\frac{19}{48}x^{4}+\frac{9}{2}x^{2}+206-4x^{3}
Add 81 and 125 to get 206.