Solve for x
x=-3
x=1
Graph
Share
Copied to clipboard
15x+3x^{2}+2\left(-x+3\right)=2x+5\left(x+3\right)
Use the distributive property to multiply 3x by 5+x.
15x+3x^{2}+2\left(-x\right)+6=2x+5\left(x+3\right)
Use the distributive property to multiply 2 by -x+3.
15x+3x^{2}+2\left(-x\right)+6=2x+5x+15
Use the distributive property to multiply 5 by x+3.
15x+3x^{2}+2\left(-x\right)+6=7x+15
Combine 2x and 5x to get 7x.
15x+3x^{2}+2\left(-x\right)+6-7x=15
Subtract 7x from both sides.
8x+3x^{2}+2\left(-x\right)+6=15
Combine 15x and -7x to get 8x.
8x+3x^{2}+2\left(-x\right)+6-15=0
Subtract 15 from both sides.
8x+3x^{2}+2\left(-x\right)-9=0
Subtract 15 from 6 to get -9.
8x+3x^{2}-2x-9=0
Multiply 2 and -1 to get -2.
6x+3x^{2}-9=0
Combine 8x and -2x to get 6x.
3x^{2}+6x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\times 3\left(-9\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 6 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 3\left(-9\right)}}{2\times 3}
Square 6.
x=\frac{-6±\sqrt{36-12\left(-9\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-6±\sqrt{36+108}}{2\times 3}
Multiply -12 times -9.
x=\frac{-6±\sqrt{144}}{2\times 3}
Add 36 to 108.
x=\frac{-6±12}{2\times 3}
Take the square root of 144.
x=\frac{-6±12}{6}
Multiply 2 times 3.
x=\frac{6}{6}
Now solve the equation x=\frac{-6±12}{6} when ± is plus. Add -6 to 12.
x=1
Divide 6 by 6.
x=-\frac{18}{6}
Now solve the equation x=\frac{-6±12}{6} when ± is minus. Subtract 12 from -6.
x=-3
Divide -18 by 6.
x=1 x=-3
The equation is now solved.
15x+3x^{2}+2\left(-x+3\right)=2x+5\left(x+3\right)
Use the distributive property to multiply 3x by 5+x.
15x+3x^{2}+2\left(-x\right)+6=2x+5\left(x+3\right)
Use the distributive property to multiply 2 by -x+3.
15x+3x^{2}+2\left(-x\right)+6=2x+5x+15
Use the distributive property to multiply 5 by x+3.
15x+3x^{2}+2\left(-x\right)+6=7x+15
Combine 2x and 5x to get 7x.
15x+3x^{2}+2\left(-x\right)+6-7x=15
Subtract 7x from both sides.
8x+3x^{2}+2\left(-x\right)+6=15
Combine 15x and -7x to get 8x.
8x+3x^{2}+2\left(-x\right)=15-6
Subtract 6 from both sides.
8x+3x^{2}+2\left(-x\right)=9
Subtract 6 from 15 to get 9.
8x+3x^{2}-2x=9
Multiply 2 and -1 to get -2.
6x+3x^{2}=9
Combine 8x and -2x to get 6x.
3x^{2}+6x=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}+6x}{3}=\frac{9}{3}
Divide both sides by 3.
x^{2}+\frac{6}{3}x=\frac{9}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+2x=\frac{9}{3}
Divide 6 by 3.
x^{2}+2x=3
Divide 9 by 3.
x^{2}+2x+1^{2}=3+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=3+1
Square 1.
x^{2}+2x+1=4
Add 3 to 1.
\left(x+1\right)^{2}=4
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+1=2 x+1=-2
Simplify.
x=1 x=-3
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}