Evaluate
-\frac{289\left(ax\right)^{4}}{8}
Expand
-\frac{289\left(ax\right)^{4}}{8}
Graph
Share
Copied to clipboard
\left(2a^{3}x^{2}+\frac{1}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x\times \frac{10}{3}x-\left(-\frac{4}{3}ax^{2}\times 6a^{2}\right)\right)\left(-\frac{17}{4}\right)ax^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(2a^{3}x^{2}+\frac{1}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x^{2}\times \frac{10}{3}-\left(-\frac{4}{3}ax^{2}\times 6a^{2}\right)\right)\left(-\frac{17}{4}\right)ax^{2}
Multiply x and x to get x^{2}.
\left(2a^{3}x^{2}+\frac{1}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x^{2}\times \frac{10}{3}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\left(-\frac{17}{4}\right)ax^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(\frac{5}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x^{2}\times \frac{10}{3}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\left(-\frac{17}{4}\right)ax^{2}
Combine 2a^{3}x^{2} and \frac{1}{2}a^{3}x^{2} to get \frac{5}{2}a^{3}x^{2}.
\left(\frac{5}{2}a^{3}x^{2}-2a^{3}x^{2}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\left(-\frac{17}{4}\right)ax^{2}
Multiply -\frac{3}{5} and \frac{10}{3} to get -2.
\left(\frac{1}{2}a^{3}x^{2}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\left(-\frac{17}{4}\right)ax^{2}
Combine \frac{5}{2}a^{3}x^{2} and -2a^{3}x^{2} to get \frac{1}{2}a^{3}x^{2}.
\left(\frac{1}{2}a^{3}x^{2}-\left(-8a^{3}x^{2}\right)\right)\left(-\frac{17}{4}\right)ax^{2}
Multiply -\frac{4}{3} and 6 to get -8.
\left(\frac{1}{2}a^{3}x^{2}+8a^{3}x^{2}\right)\left(-\frac{17}{4}\right)ax^{2}
The opposite of -8a^{3}x^{2} is 8a^{3}x^{2}.
\frac{17}{2}a^{3}x^{2}\left(-\frac{17}{4}\right)ax^{2}
Combine \frac{1}{2}a^{3}x^{2} and 8a^{3}x^{2} to get \frac{17}{2}a^{3}x^{2}.
-\frac{289}{8}a^{3}x^{2}ax^{2}
Multiply \frac{17}{2} and -\frac{17}{4} to get -\frac{289}{8}.
-\frac{289}{8}a^{4}x^{2}x^{2}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
-\frac{289}{8}a^{4}x^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\left(2a^{3}x^{2}+\frac{1}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x\times \frac{10}{3}x-\left(-\frac{4}{3}ax^{2}\times 6a^{2}\right)\right)\left(-\frac{17}{4}\right)ax^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(2a^{3}x^{2}+\frac{1}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x^{2}\times \frac{10}{3}-\left(-\frac{4}{3}ax^{2}\times 6a^{2}\right)\right)\left(-\frac{17}{4}\right)ax^{2}
Multiply x and x to get x^{2}.
\left(2a^{3}x^{2}+\frac{1}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x^{2}\times \frac{10}{3}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\left(-\frac{17}{4}\right)ax^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(\frac{5}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x^{2}\times \frac{10}{3}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\left(-\frac{17}{4}\right)ax^{2}
Combine 2a^{3}x^{2} and \frac{1}{2}a^{3}x^{2} to get \frac{5}{2}a^{3}x^{2}.
\left(\frac{5}{2}a^{3}x^{2}-2a^{3}x^{2}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\left(-\frac{17}{4}\right)ax^{2}
Multiply -\frac{3}{5} and \frac{10}{3} to get -2.
\left(\frac{1}{2}a^{3}x^{2}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\left(-\frac{17}{4}\right)ax^{2}
Combine \frac{5}{2}a^{3}x^{2} and -2a^{3}x^{2} to get \frac{1}{2}a^{3}x^{2}.
\left(\frac{1}{2}a^{3}x^{2}-\left(-8a^{3}x^{2}\right)\right)\left(-\frac{17}{4}\right)ax^{2}
Multiply -\frac{4}{3} and 6 to get -8.
\left(\frac{1}{2}a^{3}x^{2}+8a^{3}x^{2}\right)\left(-\frac{17}{4}\right)ax^{2}
The opposite of -8a^{3}x^{2} is 8a^{3}x^{2}.
\frac{17}{2}a^{3}x^{2}\left(-\frac{17}{4}\right)ax^{2}
Combine \frac{1}{2}a^{3}x^{2} and 8a^{3}x^{2} to get \frac{17}{2}a^{3}x^{2}.
-\frac{289}{8}a^{3}x^{2}ax^{2}
Multiply \frac{17}{2} and -\frac{17}{4} to get -\frac{289}{8}.
-\frac{289}{8}a^{4}x^{2}x^{2}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
-\frac{289}{8}a^{4}x^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}