Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2a^{3}x^{2}+\frac{1}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x\times \frac{10}{3}x-\left(-\frac{4}{3}ax^{2}\times 6a^{2}\right)\right)\times \frac{17}{4}ax^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(2a^{3}x^{2}+\frac{1}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x^{2}\times \frac{10}{3}-\left(-\frac{4}{3}ax^{2}\times 6a^{2}\right)\right)\times \frac{17}{4}ax^{2}
Multiply x and x to get x^{2}.
\left(2a^{3}x^{2}+\frac{1}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x^{2}\times \frac{10}{3}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\times \frac{17}{4}ax^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(\frac{5}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x^{2}\times \frac{10}{3}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\times \frac{17}{4}ax^{2}
Combine 2a^{3}x^{2} and \frac{1}{2}a^{3}x^{2} to get \frac{5}{2}a^{3}x^{2}.
\left(\frac{5}{2}a^{3}x^{2}-2a^{3}x^{2}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\times \frac{17}{4}ax^{2}
Multiply -\frac{3}{5} and \frac{10}{3} to get -2.
\left(\frac{1}{2}a^{3}x^{2}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\times \frac{17}{4}ax^{2}
Combine \frac{5}{2}a^{3}x^{2} and -2a^{3}x^{2} to get \frac{1}{2}a^{3}x^{2}.
\left(\frac{1}{2}a^{3}x^{2}-\left(-8a^{3}x^{2}\right)\right)\times \frac{17}{4}ax^{2}
Multiply -\frac{4}{3} and 6 to get -8.
\left(\frac{1}{2}a^{3}x^{2}+8a^{3}x^{2}\right)\times \frac{17}{4}ax^{2}
The opposite of -8a^{3}x^{2} is 8a^{3}x^{2}.
\frac{17}{2}a^{3}x^{2}\times \frac{17}{4}ax^{2}
Combine \frac{1}{2}a^{3}x^{2} and 8a^{3}x^{2} to get \frac{17}{2}a^{3}x^{2}.
\frac{289}{8}a^{3}x^{2}ax^{2}
Multiply \frac{17}{2} and \frac{17}{4} to get \frac{289}{8}.
\frac{289}{8}a^{4}x^{2}x^{2}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{289}{8}a^{4}x^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\left(2a^{3}x^{2}+\frac{1}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x\times \frac{10}{3}x-\left(-\frac{4}{3}ax^{2}\times 6a^{2}\right)\right)\times \frac{17}{4}ax^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(2a^{3}x^{2}+\frac{1}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x^{2}\times \frac{10}{3}-\left(-\frac{4}{3}ax^{2}\times 6a^{2}\right)\right)\times \frac{17}{4}ax^{2}
Multiply x and x to get x^{2}.
\left(2a^{3}x^{2}+\frac{1}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x^{2}\times \frac{10}{3}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\times \frac{17}{4}ax^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(\frac{5}{2}a^{3}x^{2}-\frac{3}{5}a^{3}x^{2}\times \frac{10}{3}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\times \frac{17}{4}ax^{2}
Combine 2a^{3}x^{2} and \frac{1}{2}a^{3}x^{2} to get \frac{5}{2}a^{3}x^{2}.
\left(\frac{5}{2}a^{3}x^{2}-2a^{3}x^{2}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\times \frac{17}{4}ax^{2}
Multiply -\frac{3}{5} and \frac{10}{3} to get -2.
\left(\frac{1}{2}a^{3}x^{2}-\left(-\frac{4}{3}a^{3}x^{2}\times 6\right)\right)\times \frac{17}{4}ax^{2}
Combine \frac{5}{2}a^{3}x^{2} and -2a^{3}x^{2} to get \frac{1}{2}a^{3}x^{2}.
\left(\frac{1}{2}a^{3}x^{2}-\left(-8a^{3}x^{2}\right)\right)\times \frac{17}{4}ax^{2}
Multiply -\frac{4}{3} and 6 to get -8.
\left(\frac{1}{2}a^{3}x^{2}+8a^{3}x^{2}\right)\times \frac{17}{4}ax^{2}
The opposite of -8a^{3}x^{2} is 8a^{3}x^{2}.
\frac{17}{2}a^{3}x^{2}\times \frac{17}{4}ax^{2}
Combine \frac{1}{2}a^{3}x^{2} and 8a^{3}x^{2} to get \frac{17}{2}a^{3}x^{2}.
\frac{289}{8}a^{3}x^{2}ax^{2}
Multiply \frac{17}{2} and \frac{17}{4} to get \frac{289}{8}.
\frac{289}{8}a^{4}x^{2}x^{2}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{289}{8}a^{4}x^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.