Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{1}{2}a^{5}b^{2}+3a^{4}b^{2}-2a^{3}b^{2}-b^{2}\left(3a^{4}-2a^{3}\right)\right)^{3}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
Use the distributive property to multiply 2a^{3}b by \frac{1}{4}a^{2}b+\frac{3}{2}ab-b.
\frac{\left(\frac{1}{2}a^{5}b^{2}+3a^{4}b^{2}-2a^{3}b^{2}-\left(3b^{2}a^{4}-2b^{2}a^{3}\right)\right)^{3}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
Use the distributive property to multiply b^{2} by 3a^{4}-2a^{3}.
\frac{\left(\frac{1}{2}a^{5}b^{2}+3a^{4}b^{2}-2a^{3}b^{2}-3b^{2}a^{4}+2b^{2}a^{3}\right)^{3}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
To find the opposite of 3b^{2}a^{4}-2b^{2}a^{3}, find the opposite of each term.
\frac{\left(\frac{1}{2}a^{5}b^{2}-2a^{3}b^{2}+2b^{2}a^{3}\right)^{3}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
Combine 3a^{4}b^{2} and -3b^{2}a^{4} to get 0.
\frac{\left(\frac{1}{2}a^{5}b^{2}\right)^{3}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
Combine -2a^{3}b^{2} and 2b^{2}a^{3} to get 0.
\frac{\left(\frac{1}{2}\right)^{3}\left(a^{5}\right)^{3}\left(b^{2}\right)^{3}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
Expand \left(\frac{1}{2}a^{5}b^{2}\right)^{3}.
\frac{\left(\frac{1}{2}\right)^{3}a^{15}\left(b^{2}\right)^{3}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{\left(\frac{1}{2}\right)^{3}a^{15}b^{6}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{1}{8}a^{15}b^{6}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
Calculate \frac{1}{2} to the power of 3 and get \frac{1}{8}.
\frac{\frac{1}{8}a^{15}b^{6}}{\frac{1}{2}a^{5}b^{2}+a^{2}b-a^{2}b}
Use the distributive property to multiply a^{2}b by \frac{1}{2}a^{3}b+1.
\frac{\frac{1}{8}a^{15}b^{6}}{\frac{1}{2}a^{5}b^{2}}
Combine a^{2}b and -a^{2}b to get 0.
\frac{\frac{1}{8}b^{4}a^{10}}{\frac{1}{2}}
Cancel out b^{2}a^{5} in both numerator and denominator.
\frac{1}{8}b^{4}a^{10}\times 2
Divide \frac{1}{8}b^{4}a^{10} by \frac{1}{2} by multiplying \frac{1}{8}b^{4}a^{10} by the reciprocal of \frac{1}{2}.
\frac{1}{4}b^{4}a^{10}
Multiply \frac{1}{8} and 2 to get \frac{1}{4}.
\frac{\left(\frac{1}{2}a^{5}b^{2}+3a^{4}b^{2}-2a^{3}b^{2}-b^{2}\left(3a^{4}-2a^{3}\right)\right)^{3}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
Use the distributive property to multiply 2a^{3}b by \frac{1}{4}a^{2}b+\frac{3}{2}ab-b.
\frac{\left(\frac{1}{2}a^{5}b^{2}+3a^{4}b^{2}-2a^{3}b^{2}-\left(3b^{2}a^{4}-2b^{2}a^{3}\right)\right)^{3}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
Use the distributive property to multiply b^{2} by 3a^{4}-2a^{3}.
\frac{\left(\frac{1}{2}a^{5}b^{2}+3a^{4}b^{2}-2a^{3}b^{2}-3b^{2}a^{4}+2b^{2}a^{3}\right)^{3}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
To find the opposite of 3b^{2}a^{4}-2b^{2}a^{3}, find the opposite of each term.
\frac{\left(\frac{1}{2}a^{5}b^{2}-2a^{3}b^{2}+2b^{2}a^{3}\right)^{3}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
Combine 3a^{4}b^{2} and -3b^{2}a^{4} to get 0.
\frac{\left(\frac{1}{2}a^{5}b^{2}\right)^{3}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
Combine -2a^{3}b^{2} and 2b^{2}a^{3} to get 0.
\frac{\left(\frac{1}{2}\right)^{3}\left(a^{5}\right)^{3}\left(b^{2}\right)^{3}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
Expand \left(\frac{1}{2}a^{5}b^{2}\right)^{3}.
\frac{\left(\frac{1}{2}\right)^{3}a^{15}\left(b^{2}\right)^{3}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{\left(\frac{1}{2}\right)^{3}a^{15}b^{6}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{1}{8}a^{15}b^{6}}{a^{2}b\left(\frac{1}{2}a^{3}b+1\right)-a^{2}b}
Calculate \frac{1}{2} to the power of 3 and get \frac{1}{8}.
\frac{\frac{1}{8}a^{15}b^{6}}{\frac{1}{2}a^{5}b^{2}+a^{2}b-a^{2}b}
Use the distributive property to multiply a^{2}b by \frac{1}{2}a^{3}b+1.
\frac{\frac{1}{8}a^{15}b^{6}}{\frac{1}{2}a^{5}b^{2}}
Combine a^{2}b and -a^{2}b to get 0.
\frac{\frac{1}{8}b^{4}a^{10}}{\frac{1}{2}}
Cancel out b^{2}a^{5} in both numerator and denominator.
\frac{1}{8}b^{4}a^{10}\times 2
Divide \frac{1}{8}b^{4}a^{10} by \frac{1}{2} by multiplying \frac{1}{8}b^{4}a^{10} by the reciprocal of \frac{1}{2}.
\frac{1}{4}b^{4}a^{10}
Multiply \frac{1}{8} and 2 to get \frac{1}{4}.