Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{12\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{18}{\sqrt{5}-\sqrt{3}}
Rationalize the denominator of \frac{12}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\frac{12\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{18}{\sqrt{5}-\sqrt{3}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{12\left(\sqrt{5}-\sqrt{3}\right)}{5-3}+\frac{18}{\sqrt{5}-\sqrt{3}}
Square \sqrt{5}. Square \sqrt{3}.
\frac{12\left(\sqrt{5}-\sqrt{3}\right)}{2}+\frac{18}{\sqrt{5}-\sqrt{3}}
Subtract 3 from 5 to get 2.
6\left(\sqrt{5}-\sqrt{3}\right)+\frac{18}{\sqrt{5}-\sqrt{3}}
Divide 12\left(\sqrt{5}-\sqrt{3}\right) by 2 to get 6\left(\sqrt{5}-\sqrt{3}\right).
6\left(\sqrt{5}-\sqrt{3}\right)+\frac{18\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}
Rationalize the denominator of \frac{18}{\sqrt{5}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{3}.
6\left(\sqrt{5}-\sqrt{3}\right)+\frac{18\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6\left(\sqrt{5}-\sqrt{3}\right)+\frac{18\left(\sqrt{5}+\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
6\left(\sqrt{5}-\sqrt{3}\right)+\frac{18\left(\sqrt{5}+\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
6\left(\sqrt{5}-\sqrt{3}\right)+9\left(\sqrt{5}+\sqrt{3}\right)
Divide 18\left(\sqrt{5}+\sqrt{3}\right) by 2 to get 9\left(\sqrt{5}+\sqrt{3}\right).
6\sqrt{5}-6\sqrt{3}+9\left(\sqrt{5}+\sqrt{3}\right)
Use the distributive property to multiply 6 by \sqrt{5}-\sqrt{3}.
6\sqrt{5}-6\sqrt{3}+9\sqrt{5}+9\sqrt{3}
Use the distributive property to multiply 9 by \sqrt{5}+\sqrt{3}.
15\sqrt{5}-6\sqrt{3}+9\sqrt{3}
Combine 6\sqrt{5} and 9\sqrt{5} to get 15\sqrt{5}.
15\sqrt{5}+3\sqrt{3}
Combine -6\sqrt{3} and 9\sqrt{3} to get 3\sqrt{3}.