Evaluate
\text{Indeterminate}
Factor
\text{Indeterminate}
Share
Copied to clipboard
6\left(\frac{800}{8}+\frac{369}{8}-\frac{\sqrt{66}}{\frac{8-8}{9}}\right)
Convert 100 to fraction \frac{800}{8}.
6\left(\frac{800+369}{8}-\frac{\sqrt{66}}{\frac{8-8}{9}}\right)
Since \frac{800}{8} and \frac{369}{8} have the same denominator, add them by adding their numerators.
6\left(\frac{1169}{8}-\frac{\sqrt{66}}{\frac{8-8}{9}}\right)
Add 800 and 369 to get 1169.
6\left(\frac{1169}{8}-\frac{\sqrt{66}\times 9}{8-8}\right)
Divide \sqrt{66} by \frac{8-8}{9} by multiplying \sqrt{66} by the reciprocal of \frac{8-8}{9}.
6\left(\frac{1169}{8}-\frac{\sqrt{66}\times 9}{0}\right)
Subtract 8 from 8 to get 0.
6\left(\frac{1169}{8}-\sqrt{66}\text{Indeterminate}\right)
Divide \sqrt{66}\times 9 by 0 to get \sqrt{66}\text{Indeterminate}.
6\times \frac{1169}{8}+6\left(-\sqrt{66}\text{Indeterminate}\right)
Use the distributive property to multiply 6 by \frac{1169}{8}-\sqrt{66}\text{Indeterminate}.
\frac{6\times 1169}{8}+6\left(-\sqrt{66}\text{Indeterminate}\right)
Express 6\times \frac{1169}{8} as a single fraction.
\frac{7014}{8}+6\left(-\sqrt{66}\text{Indeterminate}\right)
Multiply 6 and 1169 to get 7014.
\frac{3507}{4}+6\left(-\sqrt{66}\text{Indeterminate}\right)
Reduce the fraction \frac{7014}{8} to lowest terms by extracting and canceling out 2.
\frac{3507}{4}-6\sqrt{66}\text{Indeterminate}
Multiply 6 and -1 to get -6.
\frac{3507}{4}+\text{Indeterminate}\sqrt{66}
Multiply -6 and \text{Indeterminate} to get \text{Indeterminate}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}