Evaluate
\frac{16\sqrt{3}i}{5}-\frac{4042}{75}\approx -53.893333333+5.542562584i
Real Part
-\frac{4042}{75} = -53\frac{67}{75} = -53.89333333333333
Share
Copied to clipboard
18\left(-\sqrt{3}\right)\sqrt{3}-\frac{4}{5}i\left(-\sqrt{3}\right)+\frac{12}{5}i\sqrt{3}+\frac{8}{75}
Apply the distributive property by multiplying each term of -\sqrt{3}+\frac{2}{15}i by each term of 18\sqrt{3}-\frac{4}{5}i.
-18\sqrt{3}\sqrt{3}-\frac{4}{5}i\left(-1\right)\sqrt{3}+\frac{12}{5}i\sqrt{3}+\frac{8}{75}
Multiply 18 and -1 to get -18.
-18\times 3-\frac{4}{5}i\left(-1\right)\sqrt{3}+\frac{12}{5}i\sqrt{3}+\frac{8}{75}
Multiply \sqrt{3} and \sqrt{3} to get 3.
-54-\frac{4}{5}i\left(-1\right)\sqrt{3}+\frac{12}{5}i\sqrt{3}+\frac{8}{75}
Multiply -18 and 3 to get -54.
-54+\frac{4}{5}i\sqrt{3}+\frac{12}{5}i\sqrt{3}+\frac{8}{75}
Multiply -\frac{4}{5}i and -1 to get \frac{4}{5}i.
-54+\frac{16}{5}i\sqrt{3}+\frac{8}{75}
Combine \frac{4}{5}i\sqrt{3} and \frac{12}{5}i\sqrt{3} to get \frac{16}{5}i\sqrt{3}.
-\frac{4050}{75}+\frac{16}{5}i\sqrt{3}+\frac{8}{75}
Convert -54 to fraction -\frac{4050}{75}.
\frac{-4050+8}{75}+\frac{16}{5}i\sqrt{3}
Since -\frac{4050}{75} and \frac{8}{75} have the same denominator, add them by adding their numerators.
-\frac{4042}{75}+\frac{16}{5}i\sqrt{3}
Add -4050 and 8 to get -4042.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}