Skip to main content
Differentiate w.r.t. x
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(\left(\left(2x^{2}-2\right)x-\int -\left(\frac{1}{2}x-3\right)\mathrm{d}x\right)x)
Use the distributive property to multiply x^{2}-1 by 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(2x^{3}-2x-\int -\left(\frac{1}{2}x-3\right)\mathrm{d}x\right)x)
Use the distributive property to multiply 2x^{2}-2 by x.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(2x^{3}-2x-\int -\frac{1}{2}x+3\mathrm{d}x\right)x)
To find the opposite of \frac{1}{2}x-3, find the opposite of each term.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{4}-2x^{2}-\int -\frac{1}{2}x+3\mathrm{d}xx)
Use the distributive property to multiply 2x^{3}-2x-\int -\frac{1}{2}x+3\mathrm{d}x by x.
4\times 2x^{4-1}+2\left(-2\right)x^{2-1}+\left(-\int -\frac{x}{2}+3\mathrm{d}x\right)x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
8x^{4-1}+2\left(-2\right)x^{2-1}+\left(-\int -\frac{x}{2}+3\mathrm{d}x\right)x^{1-1}
Multiply 4 times 2.
8x^{3}+2\left(-2\right)x^{2-1}+\left(-\int -\frac{x}{2}+3\mathrm{d}x\right)x^{1-1}
Subtract 1 from 4.
8x^{3}-4x^{2-1}+\left(-\int -\frac{x}{2}+3\mathrm{d}x\right)x^{1-1}
Multiply 2 times -2.
8x^{3}-4x^{1}+\left(-\int -\frac{x}{2}+3\mathrm{d}x\right)x^{1-1}
Subtract 1 from 2.
8x^{3}-4x^{1}+\left(-\left(-\frac{x^{2}}{4}+3x+С\right)\right)x^{0}
Subtract 1 from 1.
8x^{3}-4x+\left(-\left(-\frac{x^{2}}{4}+3x+С\right)\right)x^{0}
For any term t, t^{1}=t.
8x^{3}-4x+\left(-\left(-\frac{x^{2}}{4}+3x+С\right)\right)\times 1
For any term t except 0, t^{0}=1.
8x^{3}-4x-\left(-\frac{x^{2}}{4}+3x+С\right)
For any term t, t\times 1=t and 1t=t.