Skip to main content
Solve for n (complex solution)
Tick mark Image
Solve for n
Tick mark Image
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

m^{2}-n^{2}+\left(m-n\right)^{2}-4m\left(m-n\right)=2m
Consider \left(m+n\right)\left(m-n\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
m^{2}-n^{2}+m^{2}-2mn+n^{2}-4m\left(m-n\right)=2m
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-n\right)^{2}.
2m^{2}-n^{2}-2mn+n^{2}-4m\left(m-n\right)=2m
Combine m^{2} and m^{2} to get 2m^{2}.
2m^{2}-2mn-4m\left(m-n\right)=2m
Combine -n^{2} and n^{2} to get 0.
2m^{2}-2mn-4m^{2}+4mn=2m
Use the distributive property to multiply -4m by m-n.
-2m^{2}-2mn+4mn=2m
Combine 2m^{2} and -4m^{2} to get -2m^{2}.
-2m^{2}+2mn=2m
Combine -2mn and 4mn to get 2mn.
2mn=2m+2m^{2}
Add 2m^{2} to both sides.
2mn=2m^{2}+2m
The equation is in standard form.
\frac{2mn}{2m}=\frac{2m\left(m+1\right)}{2m}
Divide both sides by 2m.
n=\frac{2m\left(m+1\right)}{2m}
Dividing by 2m undoes the multiplication by 2m.
n=m+1
Divide 2m\left(1+m\right) by 2m.
m^{2}-n^{2}+\left(m-n\right)^{2}-4m\left(m-n\right)=2m
Consider \left(m+n\right)\left(m-n\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
m^{2}-n^{2}+m^{2}-2mn+n^{2}-4m\left(m-n\right)=2m
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-n\right)^{2}.
2m^{2}-n^{2}-2mn+n^{2}-4m\left(m-n\right)=2m
Combine m^{2} and m^{2} to get 2m^{2}.
2m^{2}-2mn-4m\left(m-n\right)=2m
Combine -n^{2} and n^{2} to get 0.
2m^{2}-2mn-4m^{2}+4mn=2m
Use the distributive property to multiply -4m by m-n.
-2m^{2}-2mn+4mn=2m
Combine 2m^{2} and -4m^{2} to get -2m^{2}.
-2m^{2}+2mn=2m
Combine -2mn and 4mn to get 2mn.
2mn=2m+2m^{2}
Add 2m^{2} to both sides.
2mn=2m^{2}+2m
The equation is in standard form.
\frac{2mn}{2m}=\frac{2m\left(m+1\right)}{2m}
Divide both sides by 2m.
n=\frac{2m\left(m+1\right)}{2m}
Dividing by 2m undoes the multiplication by 2m.
n=m+1
Divide 2m\left(1+m\right) by 2m.