Solve for n (complex solution)
\left\{\begin{matrix}\\n=m+1\text{, }&\text{unconditionally}\\n\in \mathrm{C}\text{, }&m=0\end{matrix}\right.
Solve for n
\left\{\begin{matrix}\\n=m+1\text{, }&\text{unconditionally}\\n\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Solve for m
m=n-1
m=0
Share
Copied to clipboard
m^{2}-n^{2}+\left(m-n\right)^{2}-4m\left(m-n\right)=2m
Consider \left(m+n\right)\left(m-n\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
m^{2}-n^{2}+m^{2}-2mn+n^{2}-4m\left(m-n\right)=2m
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-n\right)^{2}.
2m^{2}-n^{2}-2mn+n^{2}-4m\left(m-n\right)=2m
Combine m^{2} and m^{2} to get 2m^{2}.
2m^{2}-2mn-4m\left(m-n\right)=2m
Combine -n^{2} and n^{2} to get 0.
2m^{2}-2mn-4m^{2}+4mn=2m
Use the distributive property to multiply -4m by m-n.
-2m^{2}-2mn+4mn=2m
Combine 2m^{2} and -4m^{2} to get -2m^{2}.
-2m^{2}+2mn=2m
Combine -2mn and 4mn to get 2mn.
2mn=2m+2m^{2}
Add 2m^{2} to both sides.
2mn=2m^{2}+2m
The equation is in standard form.
\frac{2mn}{2m}=\frac{2m\left(m+1\right)}{2m}
Divide both sides by 2m.
n=\frac{2m\left(m+1\right)}{2m}
Dividing by 2m undoes the multiplication by 2m.
n=m+1
Divide 2m\left(1+m\right) by 2m.
m^{2}-n^{2}+\left(m-n\right)^{2}-4m\left(m-n\right)=2m
Consider \left(m+n\right)\left(m-n\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
m^{2}-n^{2}+m^{2}-2mn+n^{2}-4m\left(m-n\right)=2m
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-n\right)^{2}.
2m^{2}-n^{2}-2mn+n^{2}-4m\left(m-n\right)=2m
Combine m^{2} and m^{2} to get 2m^{2}.
2m^{2}-2mn-4m\left(m-n\right)=2m
Combine -n^{2} and n^{2} to get 0.
2m^{2}-2mn-4m^{2}+4mn=2m
Use the distributive property to multiply -4m by m-n.
-2m^{2}-2mn+4mn=2m
Combine 2m^{2} and -4m^{2} to get -2m^{2}.
-2m^{2}+2mn=2m
Combine -2mn and 4mn to get 2mn.
2mn=2m+2m^{2}
Add 2m^{2} to both sides.
2mn=2m^{2}+2m
The equation is in standard form.
\frac{2mn}{2m}=\frac{2m\left(m+1\right)}{2m}
Divide both sides by 2m.
n=\frac{2m\left(m+1\right)}{2m}
Dividing by 2m undoes the multiplication by 2m.
n=m+1
Divide 2m\left(1+m\right) by 2m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}