Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\left(\frac{-\left(a^{4}-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)a^{8}}{-\frac{1}{2}a^{8}}+2\right)^{2}}{\left(-2\left(-a\right)^{4}\right)^{2}}-\left(-a^{2}\right)^{2}\left(a^{4}+2\right)
Factor the expressions that are not already factored in \frac{a^{8}-a^{12}-a^{16}}{-\frac{1}{2}a^{8}}.
\frac{\left(\frac{-\left(a^{4}-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{-\frac{1}{2}}+2\right)^{2}}{\left(-2\left(-a\right)^{4}\right)^{2}}-\left(-a^{2}\right)^{2}\left(a^{4}+2\right)
Cancel out a^{8} in both numerator and denominator.
\frac{\left(2\left(a^{4}-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+2\right)^{2}}{\left(-2\left(-a\right)^{4}\right)^{2}}-\left(-a^{2}\right)^{2}\left(a^{4}+2\right)
Divide -\left(a^{4}-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right) by -\frac{1}{2} to get 2\left(a^{4}-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right).
\frac{\left(2\left(a^{4}-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+2\right)^{2}}{\left(-2\right)^{2}\left(\left(-a\right)^{4}\right)^{2}}-\left(-a^{2}\right)^{2}\left(a^{4}+2\right)
Expand \left(-2\left(-a\right)^{4}\right)^{2}.
\frac{\left(2\left(a^{4}-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+2\right)^{2}}{\left(-2\right)^{2}\left(-a\right)^{8}}-\left(-a^{2}\right)^{2}\left(a^{4}+2\right)
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{\left(2\left(a^{4}-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+2\right)^{2}}{4\left(-a\right)^{8}}-\left(-a^{2}\right)^{2}\left(a^{4}+2\right)
Calculate -2 to the power of 2 and get 4.
\frac{\left(2\left(a^{4}-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+2\right)^{2}}{4\left(-a\right)^{8}}-\left(a^{2}\right)^{2}\left(a^{4}+2\right)
Calculate -a^{2} to the power of 2 and get \left(a^{2}\right)^{2}.
\frac{\left(2\left(a^{4}-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+2\right)^{2}}{4\left(-a\right)^{8}}-\left(\left(a^{2}\right)^{2}a^{4}+2\left(a^{2}\right)^{2}\right)
Use the distributive property to multiply \left(a^{2}\right)^{2} by a^{4}+2.
\frac{\left(2\left(a^{4}-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+2\right)^{2}}{4\left(-a\right)^{8}}-\left(a^{4}a^{4}+2\left(a^{2}\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\left(2\left(a^{4}-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+2\right)^{2}}{4\left(-a\right)^{8}}-\left(a^{8}+2\left(a^{2}\right)^{2}\right)
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
\frac{\left(2\left(a^{4}-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+2\right)^{2}}{4\left(-a\right)^{8}}-\left(a^{8}+2a^{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\left(2\left(a^{4}-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+2\right)^{2}}{4\left(-a\right)^{8}}-a^{8}-2a^{4}
To find the opposite of a^{8}+2a^{4}, find the opposite of each term.
\frac{\left(2\left(a^{4}+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(a^{4}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+2\right)^{2}}{4\left(-a\right)^{8}}-a^{8}-2a^{4}
To find the opposite of -\frac{1}{2}\sqrt{5}-\frac{1}{2}, find the opposite of each term.
\frac{\left(2\left(a^{4}+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(a^{4}-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)+2\right)^{2}}{4\left(-a\right)^{8}}-a^{8}-2a^{4}
To find the opposite of \frac{1}{2}\sqrt{5}-\frac{1}{2}, find the opposite of each term.
\frac{\left(\left(2a^{4}+\sqrt{5}+1\right)\left(a^{4}-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)+2\right)^{2}}{4\left(-a\right)^{8}}-a^{8}-2a^{4}
Use the distributive property to multiply 2 by a^{4}+\frac{1}{2}\sqrt{5}+\frac{1}{2}.
\frac{\left(2a^{8}+2a^{4}-\frac{1}{2}\left(\sqrt{5}\right)^{2}+\frac{1}{2}+2\right)^{2}}{4\left(-a\right)^{8}}-a^{8}-2a^{4}
Use the distributive property to multiply 2a^{4}+\sqrt{5}+1 by a^{4}-\frac{1}{2}\sqrt{5}+\frac{1}{2} and combine like terms.
\frac{\left(2a^{8}+2a^{4}-\frac{1}{2}\times 5+\frac{1}{2}+2\right)^{2}}{4\left(-a\right)^{8}}-a^{8}-2a^{4}
The square of \sqrt{5} is 5.
\frac{\left(2a^{8}+2a^{4}-\frac{5}{2}+\frac{1}{2}+2\right)^{2}}{4\left(-a\right)^{8}}-a^{8}-2a^{4}
Multiply -\frac{1}{2} and 5 to get -\frac{5}{2}.
\frac{\left(2a^{8}+2a^{4}-2+2\right)^{2}}{4\left(-a\right)^{8}}-a^{8}-2a^{4}
Add -\frac{5}{2} and \frac{1}{2} to get -2.
\frac{\left(2a^{8}+2a^{4}\right)^{2}}{4\left(-a\right)^{8}}-a^{8}-2a^{4}
Add -2 and 2 to get 0.
\frac{\left(2a^{8}+2a^{4}\right)^{2}}{4\left(-a\right)^{8}}+\frac{\left(-a^{8}-2a^{4}\right)\times 4\left(-a\right)^{8}}{4\left(-a\right)^{8}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -a^{8}-2a^{4} times \frac{4\left(-a\right)^{8}}{4\left(-a\right)^{8}}.
\frac{\left(2a^{8}+2a^{4}\right)^{2}+\left(-a^{8}-2a^{4}\right)\times 4\left(-a\right)^{8}}{4\left(-a\right)^{8}}
Since \frac{\left(2a^{8}+2a^{4}\right)^{2}}{4\left(-a\right)^{8}} and \frac{\left(-a^{8}-2a^{4}\right)\times 4\left(-a\right)^{8}}{4\left(-a\right)^{8}} have the same denominator, add them by adding their numerators.
\frac{\left(2a^{8}+2a^{4}\right)^{2}}{4\left(-1\right)^{8}a^{8}}-a^{8}-2a^{4}
Expand \left(-a\right)^{8}.
\frac{\left(2a^{8}+2a^{4}\right)^{2}}{4\times 1a^{8}}-a^{8}-2a^{4}
Calculate -1 to the power of 8 and get 1.
\frac{\left(2a^{8}+2a^{4}\right)^{2}}{4a^{8}}-a^{8}-2a^{4}
Multiply 4 and 1 to get 4.
\frac{\left(2a^{8}+2a^{4}\right)^{2}}{4a^{8}}+\frac{\left(-a^{8}-2a^{4}\right)\times 4a^{8}}{4a^{8}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -a^{8}-2a^{4} times \frac{4a^{8}}{4a^{8}}.
\frac{\left(2a^{8}+2a^{4}\right)^{2}+\left(-a^{8}-2a^{4}\right)\times 4a^{8}}{4a^{8}}
Since \frac{\left(2a^{8}+2a^{4}\right)^{2}}{4a^{8}} and \frac{\left(-a^{8}-2a^{4}\right)\times 4a^{8}}{4a^{8}} have the same denominator, add them by adding their numerators.
\frac{4a^{16}+8a^{12}+4a^{8}-4a^{16}-8a^{12}}{4a^{8}}
Do the multiplications in \left(2a^{8}+2a^{4}\right)^{2}+\left(-a^{8}-2a^{4}\right)\times 4a^{8}.
\frac{4a^{8}}{4a^{8}}
Combine like terms in 4a^{16}+8a^{12}+4a^{8}-4a^{16}-8a^{12}.
1
Cancel out 4a^{8} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}