Evaluate
\frac{49}{40}=1.225
Factor
\frac{7 ^ {2}}{2 ^ {3} \cdot 5} = 1\frac{9}{40} = 1.225
Share
Copied to clipboard
\frac{\frac{9}{80}\left(-42\right)}{\left(-\frac{10}{210}\right)\times 81}
Divide \frac{\frac{9}{80}}{-\frac{10}{210}} by \frac{81}{-42} by multiplying \frac{\frac{9}{80}}{-\frac{10}{210}} by the reciprocal of \frac{81}{-42}.
\frac{\frac{9\left(-42\right)}{80}}{\left(-\frac{10}{210}\right)\times 81}
Express \frac{9}{80}\left(-42\right) as a single fraction.
\frac{\frac{-378}{80}}{\left(-\frac{10}{210}\right)\times 81}
Multiply 9 and -42 to get -378.
\frac{-\frac{189}{40}}{\left(-\frac{10}{210}\right)\times 81}
Reduce the fraction \frac{-378}{80} to lowest terms by extracting and canceling out 2.
\frac{-\frac{189}{40}}{-\frac{1}{21}\times 81}
Reduce the fraction \frac{10}{210} to lowest terms by extracting and canceling out 10.
\frac{-\frac{189}{40}}{\frac{-81}{21}}
Express -\frac{1}{21}\times 81 as a single fraction.
\frac{-\frac{189}{40}}{-\frac{27}{7}}
Reduce the fraction \frac{-81}{21} to lowest terms by extracting and canceling out 3.
-\frac{189}{40}\left(-\frac{7}{27}\right)
Divide -\frac{189}{40} by -\frac{27}{7} by multiplying -\frac{189}{40} by the reciprocal of -\frac{27}{7}.
\frac{-189\left(-7\right)}{40\times 27}
Multiply -\frac{189}{40} times -\frac{7}{27} by multiplying numerator times numerator and denominator times denominator.
\frac{1323}{1080}
Do the multiplications in the fraction \frac{-189\left(-7\right)}{40\times 27}.
\frac{49}{40}
Reduce the fraction \frac{1323}{1080} to lowest terms by extracting and canceling out 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}