Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(\frac{\frac{5x^{2}y\times \frac{3}{10}x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{3}}+2x^{3}y^{3}}{\left(-5xy\right)^{2}}-\frac{3}{5}xy+xy)
Combine \frac{4}{5}x^{4}y^{5} and -\frac{1}{2}x^{4}y^{5} to get \frac{3}{10}x^{4}y^{5}.
factor(\frac{\frac{\frac{3}{2}x^{2}yx^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{3}}+2x^{3}y^{3}}{\left(-5xy\right)^{2}}-\frac{3}{5}xy+xy)
Multiply 5 and \frac{3}{10} to get \frac{3}{2}.
factor(\frac{\frac{\frac{3}{2}x^{6}yy^{5}}{\left(-\frac{1}{2}xy\right)^{3}}+2x^{3}y^{3}}{\left(-5xy\right)^{2}}-\frac{3}{5}xy+xy)
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
factor(\frac{\frac{\frac{3}{2}x^{6}y^{6}}{\left(-\frac{1}{2}xy\right)^{3}}+2x^{3}y^{3}}{\left(-5xy\right)^{2}}-\frac{3}{5}xy+xy)
To multiply powers of the same base, add their exponents. Add 1 and 5 to get 6.
factor(\frac{\frac{\frac{3}{2}x^{6}y^{6}}{\left(-\frac{1}{2}\right)^{3}x^{3}y^{3}}+2x^{3}y^{3}}{\left(-5xy\right)^{2}}-\frac{3}{5}xy+xy)
Expand \left(-\frac{1}{2}xy\right)^{3}.
factor(\frac{\frac{\frac{3}{2}x^{6}y^{6}}{-\frac{1}{8}x^{3}y^{3}}+2x^{3}y^{3}}{\left(-5xy\right)^{2}}-\frac{3}{5}xy+xy)
Calculate -\frac{1}{2} to the power of 3 and get -\frac{1}{8}.
factor(\frac{\frac{\frac{3}{2}x^{3}y^{3}}{-\frac{1}{8}}+2x^{3}y^{3}}{\left(-5xy\right)^{2}}-\frac{3}{5}xy+xy)
Cancel out x^{3}y^{3} in both numerator and denominator.
factor(\frac{\frac{\frac{3}{2}x^{3}y^{3}\times 8}{-1}+2x^{3}y^{3}}{\left(-5xy\right)^{2}}-\frac{3}{5}xy+xy)
Divide \frac{3}{2}x^{3}y^{3} by -\frac{1}{8} by multiplying \frac{3}{2}x^{3}y^{3} by the reciprocal of -\frac{1}{8}.
factor(\frac{\frac{12x^{3}y^{3}}{-1}+2x^{3}y^{3}}{\left(-5xy\right)^{2}}-\frac{3}{5}xy+xy)
Multiply \frac{3}{2} and 8 to get 12.
factor(\frac{-12x^{3}y^{3}+2x^{3}y^{3}}{\left(-5xy\right)^{2}}-\frac{3}{5}xy+xy)
Anything divided by -1 gives its opposite.
factor(\frac{-10x^{3}y^{3}}{\left(-5xy\right)^{2}}-\frac{3}{5}xy+xy)
Combine -12x^{3}y^{3} and 2x^{3}y^{3} to get -10x^{3}y^{3}.
factor(\frac{-10x^{3}y^{3}}{\left(-5\right)^{2}x^{2}y^{2}}-\frac{3}{5}xy+xy)
Expand \left(-5xy\right)^{2}.
factor(\frac{-10x^{3}y^{3}}{25x^{2}y^{2}}-\frac{3}{5}xy+xy)
Calculate -5 to the power of 2 and get 25.
factor(\frac{-2xy}{5}-\frac{3}{5}xy+xy)
Cancel out 5x^{2}y^{2} in both numerator and denominator.
factor(\frac{-2xy}{5}+\frac{2}{5}xy)
Combine -\frac{3}{5}xy and xy to get \frac{2}{5}xy.
\frac{2\left(-xy+xy\right)}{5}
Factor out \frac{2}{5}.
0
Consider -xy+xy. Factor out xy.