Solve for p
p=2
Share
Copied to clipboard
\frac{\frac{\left(2\times 3+1\right)\times 2}{3\left(3\times 2+1\right)}+\frac{5}{9}-\frac{5}{6}}{\frac{2\times 3+1}{3}}+\frac{5}{6}=0.5p
Divide \frac{2\times 3+1}{3} by \frac{3\times 2+1}{2} by multiplying \frac{2\times 3+1}{3} by the reciprocal of \frac{3\times 2+1}{2}.
\frac{\frac{2}{3}+\frac{5}{9}-\frac{5}{6}}{\frac{2\times 3+1}{3}}+\frac{5}{6}=0.5p
Cancel out 1+2\times 3 in both numerator and denominator.
\frac{\frac{6}{9}+\frac{5}{9}-\frac{5}{6}}{\frac{2\times 3+1}{3}}+\frac{5}{6}=0.5p
Least common multiple of 3 and 9 is 9. Convert \frac{2}{3} and \frac{5}{9} to fractions with denominator 9.
\frac{\frac{6+5}{9}-\frac{5}{6}}{\frac{2\times 3+1}{3}}+\frac{5}{6}=0.5p
Since \frac{6}{9} and \frac{5}{9} have the same denominator, add them by adding their numerators.
\frac{\frac{11}{9}-\frac{5}{6}}{\frac{2\times 3+1}{3}}+\frac{5}{6}=0.5p
Add 6 and 5 to get 11.
\frac{\frac{22}{18}-\frac{15}{18}}{\frac{2\times 3+1}{3}}+\frac{5}{6}=0.5p
Least common multiple of 9 and 6 is 18. Convert \frac{11}{9} and \frac{5}{6} to fractions with denominator 18.
\frac{\frac{22-15}{18}}{\frac{2\times 3+1}{3}}+\frac{5}{6}=0.5p
Since \frac{22}{18} and \frac{15}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{18}}{\frac{2\times 3+1}{3}}+\frac{5}{6}=0.5p
Subtract 15 from 22 to get 7.
\frac{\frac{7}{18}}{\frac{6+1}{3}}+\frac{5}{6}=0.5p
Multiply 2 and 3 to get 6.
\frac{\frac{7}{18}}{\frac{7}{3}}+\frac{5}{6}=0.5p
Add 6 and 1 to get 7.
\frac{7}{18}\times \frac{3}{7}+\frac{5}{6}=0.5p
Divide \frac{7}{18} by \frac{7}{3} by multiplying \frac{7}{18} by the reciprocal of \frac{7}{3}.
\frac{7\times 3}{18\times 7}+\frac{5}{6}=0.5p
Multiply \frac{7}{18} times \frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{18}+\frac{5}{6}=0.5p
Cancel out 7 in both numerator and denominator.
\frac{1}{6}+\frac{5}{6}=0.5p
Reduce the fraction \frac{3}{18} to lowest terms by extracting and canceling out 3.
\frac{1+5}{6}=0.5p
Since \frac{1}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{6}{6}=0.5p
Add 1 and 5 to get 6.
1=0.5p
Divide 6 by 6 to get 1.
0.5p=1
Swap sides so that all variable terms are on the left hand side.
p=\frac{1}{0.5}
Divide both sides by 0.5.
p=\frac{10}{5}
Expand \frac{1}{0.5} by multiplying both numerator and the denominator by 10.
p=2
Divide 10 by 5 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}