Solve for x (complex solution)
x=-10+2\sqrt{55}i\approx -10+14.832396974i
x=-2\sqrt{55}i-10\approx -10-14.832396974i
Graph
Share
Copied to clipboard
\left(50+x\right)\left(300-10x\right)=18200
Subtract 100 from 150 to get 50.
15000-200x-10x^{2}=18200
Use the distributive property to multiply 50+x by 300-10x and combine like terms.
15000-200x-10x^{2}-18200=0
Subtract 18200 from both sides.
-3200-200x-10x^{2}=0
Subtract 18200 from 15000 to get -3200.
-10x^{2}-200x-3200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\left(-10\right)\left(-3200\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, -200 for b, and -3200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-200\right)±\sqrt{40000-4\left(-10\right)\left(-3200\right)}}{2\left(-10\right)}
Square -200.
x=\frac{-\left(-200\right)±\sqrt{40000+40\left(-3200\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-\left(-200\right)±\sqrt{40000-128000}}{2\left(-10\right)}
Multiply 40 times -3200.
x=\frac{-\left(-200\right)±\sqrt{-88000}}{2\left(-10\right)}
Add 40000 to -128000.
x=\frac{-\left(-200\right)±40\sqrt{55}i}{2\left(-10\right)}
Take the square root of -88000.
x=\frac{200±40\sqrt{55}i}{2\left(-10\right)}
The opposite of -200 is 200.
x=\frac{200±40\sqrt{55}i}{-20}
Multiply 2 times -10.
x=\frac{200+40\sqrt{55}i}{-20}
Now solve the equation x=\frac{200±40\sqrt{55}i}{-20} when ± is plus. Add 200 to 40i\sqrt{55}.
x=-2\sqrt{55}i-10
Divide 200+40i\sqrt{55} by -20.
x=\frac{-40\sqrt{55}i+200}{-20}
Now solve the equation x=\frac{200±40\sqrt{55}i}{-20} when ± is minus. Subtract 40i\sqrt{55} from 200.
x=-10+2\sqrt{55}i
Divide 200-40i\sqrt{55} by -20.
x=-2\sqrt{55}i-10 x=-10+2\sqrt{55}i
The equation is now solved.
\left(50+x\right)\left(300-10x\right)=18200
Subtract 100 from 150 to get 50.
15000-200x-10x^{2}=18200
Use the distributive property to multiply 50+x by 300-10x and combine like terms.
-200x-10x^{2}=18200-15000
Subtract 15000 from both sides.
-200x-10x^{2}=3200
Subtract 15000 from 18200 to get 3200.
-10x^{2}-200x=3200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}-200x}{-10}=\frac{3200}{-10}
Divide both sides by -10.
x^{2}+\left(-\frac{200}{-10}\right)x=\frac{3200}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}+20x=\frac{3200}{-10}
Divide -200 by -10.
x^{2}+20x=-320
Divide 3200 by -10.
x^{2}+20x+10^{2}=-320+10^{2}
Divide 20, the coefficient of the x term, by 2 to get 10. Then add the square of 10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+20x+100=-320+100
Square 10.
x^{2}+20x+100=-220
Add -320 to 100.
\left(x+10\right)^{2}=-220
Factor x^{2}+20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+10\right)^{2}}=\sqrt{-220}
Take the square root of both sides of the equation.
x+10=2\sqrt{55}i x+10=-2\sqrt{55}i
Simplify.
x=-10+2\sqrt{55}i x=-2\sqrt{55}i-10
Subtract 10 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}