Evaluate
-\frac{72138957898383359999999999}{72138957898383360000000000}\approx -1
Factor
-\frac{72138957898383359999999999}{72138957898383360000000000} = -1
Share
Copied to clipboard
\frac{\left(\frac{15}{5}\right)^{12}}{\left(\frac{2^{2}\times 5\times 3\times 12\times 2^{5}}{2^{4}}\right)^{10}}-1^{3}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{\left(\frac{15}{5}\right)^{12}}{\left(\frac{2^{7}\times 5\times 3\times 12}{2^{4}}\right)^{10}}-1^{3}
To multiply powers of the same base, add their exponents. Add 2 and 5 to get 7.
\frac{3^{12}}{\left(\frac{2^{7}\times 5\times 3\times 12}{2^{4}}\right)^{10}}-1^{3}
Divide 15 by 5 to get 3.
\frac{531441}{\left(\frac{2^{7}\times 5\times 3\times 12}{2^{4}}\right)^{10}}-1^{3}
Calculate 3 to the power of 12 and get 531441.
\frac{531441}{\left(3\times 5\times 12\times 2^{3}\right)^{10}}-1^{3}
Cancel out 2^{4} in both numerator and denominator.
\frac{531441}{\left(15\times 12\times 2^{3}\right)^{10}}-1^{3}
Multiply 3 and 5 to get 15.
\frac{531441}{\left(180\times 2^{3}\right)^{10}}-1^{3}
Multiply 15 and 12 to get 180.
\frac{531441}{180^{10}\times \left(2^{3}\right)^{10}}-1^{3}
Expand \left(180\times 2^{3}\right)^{10}.
\frac{531441}{180^{10}\times 2^{30}}-1^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 10 to get 30.
\frac{531441}{35704672266240000000000\times 2^{30}}-1^{3}
Calculate 180 to the power of 10 and get 35704672266240000000000.
\frac{531441}{35704672266240000000000\times 1073741824}-1^{3}
Calculate 2 to the power of 30 and get 1073741824.
\frac{531441}{38337599924474751221760000000000}-1^{3}
Multiply 35704672266240000000000 and 1073741824 to get 38337599924474751221760000000000.
\frac{1}{72138957898383360000000000}-1^{3}
Reduce the fraction \frac{531441}{38337599924474751221760000000000} to lowest terms by extracting and canceling out 531441.
\frac{1}{72138957898383360000000000}-1
Calculate 1 to the power of 3 and get 1.
-\frac{72138957898383359999999999}{72138957898383360000000000}
Subtract 1 from \frac{1}{72138957898383360000000000} to get -\frac{72138957898383359999999999}{72138957898383360000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}