Solve for x
x=\sqrt{660889}+833\approx 1645.950798019
x=833-\sqrt{660889}\approx 20.049201981
Graph
Share
Copied to clipboard
\left(1200-x+350+116\right)x=33000
Multiply 50 and 7 to get 350.
\left(1550-x+116\right)x=33000
Add 1200 and 350 to get 1550.
\left(1666-x\right)x=33000
Add 1550 and 116 to get 1666.
1666x-x^{2}=33000
Use the distributive property to multiply 1666-x by x.
1666x-x^{2}-33000=0
Subtract 33000 from both sides.
-x^{2}+1666x-33000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1666±\sqrt{1666^{2}-4\left(-1\right)\left(-33000\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1666 for b, and -33000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1666±\sqrt{2775556-4\left(-1\right)\left(-33000\right)}}{2\left(-1\right)}
Square 1666.
x=\frac{-1666±\sqrt{2775556+4\left(-33000\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-1666±\sqrt{2775556-132000}}{2\left(-1\right)}
Multiply 4 times -33000.
x=\frac{-1666±\sqrt{2643556}}{2\left(-1\right)}
Add 2775556 to -132000.
x=\frac{-1666±2\sqrt{660889}}{2\left(-1\right)}
Take the square root of 2643556.
x=\frac{-1666±2\sqrt{660889}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{660889}-1666}{-2}
Now solve the equation x=\frac{-1666±2\sqrt{660889}}{-2} when ± is plus. Add -1666 to 2\sqrt{660889}.
x=833-\sqrt{660889}
Divide -1666+2\sqrt{660889} by -2.
x=\frac{-2\sqrt{660889}-1666}{-2}
Now solve the equation x=\frac{-1666±2\sqrt{660889}}{-2} when ± is minus. Subtract 2\sqrt{660889} from -1666.
x=\sqrt{660889}+833
Divide -1666-2\sqrt{660889} by -2.
x=833-\sqrt{660889} x=\sqrt{660889}+833
The equation is now solved.
\left(1200-x+350+116\right)x=33000
Multiply 50 and 7 to get 350.
\left(1550-x+116\right)x=33000
Add 1200 and 350 to get 1550.
\left(1666-x\right)x=33000
Add 1550 and 116 to get 1666.
1666x-x^{2}=33000
Use the distributive property to multiply 1666-x by x.
-x^{2}+1666x=33000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+1666x}{-1}=\frac{33000}{-1}
Divide both sides by -1.
x^{2}+\frac{1666}{-1}x=\frac{33000}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-1666x=\frac{33000}{-1}
Divide 1666 by -1.
x^{2}-1666x=-33000
Divide 33000 by -1.
x^{2}-1666x+\left(-833\right)^{2}=-33000+\left(-833\right)^{2}
Divide -1666, the coefficient of the x term, by 2 to get -833. Then add the square of -833 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1666x+693889=-33000+693889
Square -833.
x^{2}-1666x+693889=660889
Add -33000 to 693889.
\left(x-833\right)^{2}=660889
Factor x^{2}-1666x+693889. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-833\right)^{2}}=\sqrt{660889}
Take the square root of both sides of the equation.
x-833=\sqrt{660889} x-833=-\sqrt{660889}
Simplify.
x=\sqrt{660889}+833 x=833-\sqrt{660889}
Add 833 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}