Evaluate
a
Differentiate w.r.t. a
1
Share
Copied to clipboard
\frac{\left(1-a^{3}\right)\left(1+a^{3}\right)-1}{\left(-a\right)^{5}}
Use the distributive property to multiply 1-a by 1+a+a^{2} and combine like terms.
\frac{1-\left(a^{3}\right)^{2}-1}{\left(-a\right)^{5}}
Consider \left(1-a^{3}\right)\left(1+a^{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1-a^{6}-1}{\left(-a\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{-a^{6}}{\left(-a\right)^{5}}
Subtract 1 from 1 to get 0.
\frac{-a^{6}}{\left(-1\right)^{5}a^{5}}
Expand \left(-a\right)^{5}.
\frac{-a^{6}}{-a^{5}}
Calculate -1 to the power of 5 and get -1.
a
Cancel out -a^{5} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(1-a^{3}\right)\left(1+a^{3}\right)-1}{\left(-a\right)^{5}})
Use the distributive property to multiply 1-a by 1+a+a^{2} and combine like terms.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1-\left(a^{3}\right)^{2}-1}{\left(-a\right)^{5}})
Consider \left(1-a^{3}\right)\left(1+a^{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1-a^{6}-1}{\left(-a\right)^{5}})
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-a^{6}}{\left(-a\right)^{5}})
Subtract 1 from 1 to get 0.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-a^{6}}{\left(-1\right)^{5}a^{5}})
Expand \left(-a\right)^{5}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-a^{6}}{-a^{5}})
Calculate -1 to the power of 5 and get -1.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Cancel out -a^{5} in both numerator and denominator.
a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
a^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}