Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-a^{3}\right)\left(1+a^{3}\right)-1}{\left(-a\right)^{5}}
Use the distributive property to multiply 1-a by 1+a+a^{2} and combine like terms.
\frac{1-\left(a^{3}\right)^{2}-1}{\left(-a\right)^{5}}
Consider \left(1-a^{3}\right)\left(1+a^{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1-a^{6}-1}{\left(-a\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{-a^{6}}{\left(-a\right)^{5}}
Subtract 1 from 1 to get 0.
\frac{-a^{6}}{\left(-1\right)^{5}a^{5}}
Expand \left(-a\right)^{5}.
\frac{-a^{6}}{-a^{5}}
Calculate -1 to the power of 5 and get -1.
a
Cancel out -a^{5} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(1-a^{3}\right)\left(1+a^{3}\right)-1}{\left(-a\right)^{5}})
Use the distributive property to multiply 1-a by 1+a+a^{2} and combine like terms.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1-\left(a^{3}\right)^{2}-1}{\left(-a\right)^{5}})
Consider \left(1-a^{3}\right)\left(1+a^{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1-a^{6}-1}{\left(-a\right)^{5}})
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-a^{6}}{\left(-a\right)^{5}})
Subtract 1 from 1 to get 0.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-a^{6}}{\left(-1\right)^{5}a^{5}})
Expand \left(-a\right)^{5}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-a^{6}}{-a^{5}})
Calculate -1 to the power of 5 and get -1.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Cancel out -a^{5} in both numerator and denominator.
a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
a^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.