Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(0^{5}+0^{4}+1^{3}+1^{2}\right)^{5}}{\left(7^{0}+9^{9}\right)^{3}}}{8^{18}}
To raise a power to another power, multiply the exponents. Multiply 9 and 2 to get 18.
\frac{\frac{\left(0+0^{4}+1^{3}+1^{2}\right)^{5}}{\left(7^{0}+9^{9}\right)^{3}}}{8^{18}}
Calculate 0 to the power of 5 and get 0.
\frac{\frac{\left(0+0+1^{3}+1^{2}\right)^{5}}{\left(7^{0}+9^{9}\right)^{3}}}{8^{18}}
Calculate 0 to the power of 4 and get 0.
\frac{\frac{\left(1^{3}+1^{2}\right)^{5}}{\left(7^{0}+9^{9}\right)^{3}}}{8^{18}}
Add 0 and 0 to get 0.
\frac{\frac{\left(1+1^{2}\right)^{5}}{\left(7^{0}+9^{9}\right)^{3}}}{8^{18}}
Calculate 1 to the power of 3 and get 1.
\frac{\frac{\left(1+1\right)^{5}}{\left(7^{0}+9^{9}\right)^{3}}}{8^{18}}
Calculate 1 to the power of 2 and get 1.
\frac{\frac{2^{5}}{\left(7^{0}+9^{9}\right)^{3}}}{8^{18}}
Add 1 and 1 to get 2.
\frac{\frac{32}{\left(7^{0}+9^{9}\right)^{3}}}{8^{18}}
Calculate 2 to the power of 5 and get 32.
\frac{\frac{32}{\left(1+9^{9}\right)^{3}}}{8^{18}}
Calculate 7 to the power of 0 and get 1.
\frac{\frac{32}{\left(1+387420489\right)^{3}}}{8^{18}}
Calculate 9 to the power of 9 and get 387420489.
\frac{\frac{32}{387420490^{3}}}{8^{18}}
Add 1 and 387420489 to get 387420490.
\frac{\frac{32}{58149737453323966743649000}}{8^{18}}
Calculate 387420490 to the power of 3 and get 58149737453323966743649000.
\frac{\frac{4}{7268717181665495842956125}}{8^{18}}
Reduce the fraction \frac{32}{58149737453323966743649000} to lowest terms by extracting and canceling out 8.
\frac{\frac{4}{7268717181665495842956125}}{18014398509481984}
Calculate 8 to the power of 18 and get 18014398509481984.
\frac{4}{7268717181665495842956125\times 18014398509481984}
Express \frac{\frac{4}{7268717181665495842956125}}{18014398509481984} as a single fraction.
\frac{4}{130941567963240995832182378700788989952000}
Multiply 7268717181665495842956125 and 18014398509481984 to get 130941567963240995832182378700788989952000.
\frac{1}{32735391990810248958045594675197247488000}
Reduce the fraction \frac{4}{130941567963240995832182378700788989952000} to lowest terms by extracting and canceling out 4.